
Alabama Supercomputer Authority

HPC USER MANUAL
Eleventh Edition

Alabama Supercomputer Authority
686 Discovery Drive
Huntsville, AL 35806

The Alabama Supercomputer
Authority

�

HPC User Manual

11th Edition

Alabama Supercomputer Authority
686 Discovery Drive
Huntsville, AL 35806

Publication Date Description

1st Edition February 1988 Original printing
Revision A September 1988 Minor typographical and editorial corrections
2nd Edition June 1990 Updates and modifications of 1st Edition
3rd Edition June 1993 Complete rewrite
Revision A October 1993 New procedures and locations
4th Edition January 1994 Update for Cray C90 and editorial corrections
5th Edition March 1997 Updates, modifications, and new format
6th Edition July 1999 Updates and modifications of 5th Edition
7th Edition January 2005 Updates for Cray XD1 and SGI Altix 350
8th Edition October 2008 SGI Altix 450, DMC, and new format
9th Edition December 2010 Updated to reflect hardware upgrades
10th Edition June 2013 Added Ultraviolet, removed Altix
Edition 10.1 March 2014 Update for Ivy Bridge & Kepler chips
11th Edition July 2016 Updated for SLURM

AMD Opteron, and the AMD 64 Opteron logo are registered trademarks of Advanced
Micro Devices, Inc.

Linux is a registered trademark of Linus Torvalds.

EXPRESS is a registered trademark of ParaSoft Corporation.

SGI, NUMAlink, SGI Linux, and SGI ProPack are registered trademarks of Silicon
Graphics, Inc.

InfiniBand is a trademark of the InfiniBand Trade Association.

X Window System is a product of the Massachusetts Institute of Technology.

The section on the vi editor is reproduced with permission of the publisher, Howard
W. Sams and Co., Indianapolis Indiana, UNIX System V Primer, Waite, Augtin and
Prata, © 1984.

All other trademarks are property of their respective owners.  

Preface
This manual is provided for the users of the Alabama Supercomputer Center (ASC) as
the primary reference for use of the High Performance Computing (HPC) systems at
the Alabama Supercomputer Center. The manual covers the supercomputer
configuration, available software and hardware, access methods, and user support.

Suggestions for additions or corrections to this manual should be directed to
hpc@asc.edu or to:

 HPC User Manual
 Alabama Supercomputer Center
 686 Discovery Drive
 Huntsville, AL 35806

This manual is supplemented by a set of policies, which cover various aspects of
services provided by the Alabama Supercomputer Authority. Alabama
Supercomputer Authority policies are available at
http://www.asc.edu/usermanual/policies/policymenu.shtml 

Table of Contents

Preface iv

1. Introduction 1
 The Alabama Supercomputer Authority 1
 About this Manual 2
 Online Help 3
 Technical Support for Users 5

2. Computing Basics 7
 Parts of a Computer 7
 Computing Clusters 9
 Numeric Precision 13
 Data Management 15
 Processor Capability and Compatibility 17
 Benchmarking 18
 GPUs 19

3. Account Administration 21
 Requesting an ASC Account 21
 Disk Quotas 23

4. Computer Security 25
 Accounts 25
 Passwords 25
 Data Security 27
 Monitoring 28
 Acceptable Use 28
 Fraud 29
 Malware 31
 Government Security Requirements 32

5. Supercomputer Hardware 33
 SGI Ultraviolet Shared Memory Supercomputer . . . 34
 Dense Memory Cluster 36
 NVIDIA Tesla GPU Accelerators 37
 File Systems and Infrastructure Servers 39

6. Available Software 40

7. Accessing the Supercomputers 41
 ssh connections from OS X, Linux, or Cygwin . . . 41
 ssh connections from PuTTY 42
 Transferring Files with sftp 44
 Transferring Files with scp 48
 X-Windows 49
 Installing and running MobaXterm 49
 Installing and running Xming 52
 Cygwin Installation 53
 Using Cygwin X-Windows with SSH 57
 Using the screen terminal multiplexer 58

8. Working with Linux 60
 Files and Directories 61
 ASC Linux File Organization 62
 Manipulating Files and Directories 65
 Frequently Used Linux Commands 70
 Using Pipes and Regular Expressions 78
 Redirection of Input and Output 79
 Introduction to the nano Text Editor 80
 Introduction to the Screen-Oriented Editor vi . . . 82
 Shell Scripts 87

9. Working with the Queue System 90
 Selecting a Queue 91
 Monitoring Jobs 93
 Deleting Queued Jobs 95
 Running Existing Applications Software 95
 Running User Written Software 97
 Queue system Fairness 100

10. Efficient System Utilization 102
 Running Parallel Applications 104
 Writing Parallel Software 104
 Estimating CPU Time and Memory Needs 106

11. Using Modules 109

12. Account Configuration 112
 Environment Variables 112
 Hidden files 114
 The source and module commands 116
 The Command Prompt 117
 Creating an alias 117
 Tips for Effectively Using the Supercomputers . . . 118

13. Compiling Software 119
 A C Program Example 121
 Compilation and Runtime Errors 122
 Static Versus Dynamic Linking 124
 Optimization 125
 Programming Best Practices 130

Bibliography 135

 HPC User Manual - 11th Edition � Introduction

1. Introduction
This manual is intended for people who will use the supercomputers provided by the
Alabama Supercomputer Authority (ASA). This manual gives an introduction to the
computing hardware, applications, operating system, how to connect to the
computers, and how to run jobs. More detailed information on each of those topics is
available in other locations, and referenced as each is discussed. Other books are
referenced in the bibliography.

High performance computing (HPC) is the currently trendy monicker for
supercomputing. Thus the terms “high performance computing”, “HPC”, and
“supercomputing” are used interchangeably in this manual. Likewise the term
“supercomputer” and “computing cluster” or just “cluster” are all synonymous. A
few companies use the word “cloud” as a synonym for “cluster”, but most use the
word “cloud” as a synonym for “virtualized server”.

The Alabama Supercomputer Authority
The Alabama Supercomputer Authority (ASA) provides high performance computing
resources to state academic users, state government agencies, industrial users, and
federal government agencies. ASA is a public state nonprofit corporation that
develops, maintains, and operates the Alabama Supercomputer Center (ASC) and the
Alabama Research and Education Network (AREN). Technical services are provided
through professional services and facilities management contractor CSRA (formerly
CSC). See the website www.asc.edu for more information about ASA.

The Alabama Supercomputer Authority provides a host of services in addition to high
performance computing. The Alabama Research and Education Network (AREN) is
a statewide high-speed network installed and maintained by ASA. Information
technology services provided by ASA include access to high performance computing
resources, Internet access, website and email services, and training. ASA provides
web development services for a number of websites, including the Alabama Virtual
Library (AVL), Alabama Learning Exchange (ALEX), Educate Alabama, and
Alabama Career Technical Education. A number of customers also host disaster
recovery equipment at the Alabama Supercomputer Center.

ASA’s high performance computing resources include a SGI Ultraviolet 2000
supercomputer and a Dense Memory Cluster (DMC). Usage of these systems is free

�1

 HPC User Manual - 11th Edition � Introduction

for academic usage by faculty and students at public educational institutions in
Alabama. The majority of this manual is devoted to the description and use of these
systems.

About this Manual
Some items of information in this manual deserve particular attention by the reader.
These are denoted by the presence of one of the following icons in the left margin.

Tips are suggestions for ways to use the system more effectively. The user can
usually get work done without reading the tips, but will find that the tips describe
ways to make frequent tasks more convenient.

WARNING: Warnings indicate pitfalls that could cause significant problems for
the user. All users should read the warnings and follow their advice.

As the name implies, examples show a specific usage of a tool. Text that is not
denoted as an example is a description of how to use the tool. The example
icon is used to indicate a significant size example, not just a single line of text.

Reminders indicate information that is presented in other locations, but is also
particularly important to understand to fully appreciate the current discussion.

Figures are set aside from the text through the use of a box with rounded corners, a
black border, and a pale green background. Tables are presented in a similarly shaped
box with a pale blue background.

There are also sections of this manual that show text as it is displayed on the
computer screen. This is denoted by the use of a Courier New font. Text in Courier
New bold face indicates the command that the user actually types. The non-bold text
indicates the text provided by the system, such as the command prompt, or results
displayed by a command. Here is a short sample of commands and output to the
screen.

asndcy@dmc:~> ls -l ls_test
-rw-r--r-- 1 asndcy analyst 742 2008-06-03 13:06 ls_test
asndcy@dmc:~> chmod +x ls_test
asndcy@dmc:~> ls -l ls_test
-rwxr-xr-x 1 asndcy analyst 742 2008-06-03 13:06 ls_test

In this example, the text “asndcy@dmc:~>” is the command prompt consisting of
the user name, machine name, and directory (the tilde “~” means home directory).

�2

 Tip!

!

EXAMPLE

Reminder

 HPC User Manual - 11th Edition � Introduction

Information that the user must fill in with the appropriate name is denoted by < >
signs, as shown below, or in ALL CAPITALS if < > could be confusing.

 ls -l <file_name>

Optional command line arguments are denoted by [] signs, like this

 ls [-l] ls_test

The notation “CTRL-D” means to hold down the “control” key on the computer
keyboard while pressing the D key.

This manual has been written with information for a variety of users. As such, some
sections of the manual may not be of interest to you. The following suggests sections
of the manual that may be of interest to you.

• If you are new to Linux and the Alabama Supercomputer Center, read
Chapters 1-4 and 6-9.

• If you are new to high performance computing, but experienced with Linux
and computer science read Chapters 1, 3-6, and 9.

• If you will be using the HPC systems to write software, read Chapters 2, 5, 11,
and 13.

• If you are an experienced user of the ASC HPC systems, you might find
interesting new information in chapters 4 and 9 and the paragraphs denoted
with the green Tip! icon in the left margin.

Online Help
Nearly all HPC software packages come with electronic versions of the
documentation, which is available once you login via ssh. These are kept on the
system in the directory /opt/asn/doc and its subdirectories. These directories also
contain README.md files with a description of how to configure your account to
run the software, and how to submit jobs to the queue system.

The directory /opt/asn/doc/index has links to browse available software by
discipline. The ascdocs command gives a menu driven interface to browse through
these directories. ascdocs can display text files. For other files, ascdocs will
output the full path, which is needed to copy or download the files.

�3

 HPC User Manual - 11th Edition � Introduction

The best way to get started using a piece of software is to read the README.md
file in the directory /opt/asn/doc/PROGRAM_NAME This can also be done with
the ascdocs command. The general_information category contains information
that might be useful to users in many fields.

Various online help facilities are available. Linux information can be obtained with
the man command. For example;

 man <command_name>

or

 man -k <keyword>

The man command locates and prints the entry named command_name. The title is
entered in lowercase. If local documentation is available, “man” will give you the
option of seeing that as well. However, man pages for specific applications may be
available only after loading the module for the program. The following example
reproduces the description of man on the standard output:

 man man

For example, to get information on the gcc command, type:

 man gcc

The terms of the software license agreement for many of the software packages are
online. To see the list of software packages that have license agreements online, or
see the license agreement for a specific program, type.

 show_license list
 show_license <program>

The literature citations for many of the software packages are online. To see the list
of software packages that have citations online, or see the citation for a specific
program, type.

 show_citation list
 show_citation <program>

�4

 Tip!

 HPC User Manual - 11th Edition � Introduction

Technical Support for Users
Support for ASC HPC users combines central site (ASC) support with an applications
analyst and optional training and collaboration services. This support allows the user
to utilize the HPC systems productively as rapidly as possible. Ongoing support to
overcome problem areas and in mapping high performance computing technology
into the researcher's specific area of study may be available on a case by case basis.

An applications analyst based in Huntsville is available to provide support services to
the HPC user community. A manned helpdesk is available 24 hours a day to answer
user questions about the status of the ASA systems and AREN. In most cases, the
helpdesk will take down the relevant information and pass HPC help requests on to
the HPC technical staff.

The following means can be utilized to contact the technical support staff at the
Alabama Supercomputer Center.

 HPC help Email: hpc@asc.edu
 Network Help Desk Phone (in Huntsville): (256) 971-7448
 Network Help Desk Phone (outside Huntsville): (800) 338-8320

The HPC support staff can often give the fastest, best response if you send an email
to hpc@asc.edu and include as much as you can of the following;

• The command you typed
• The error message
• Which cluster you were logged in on at the time
• The directory you are working in
• The job number from the queue

The phone numbers above are the most expedient way to report an after hours system
outage.

The focal point for technical support is the applications analyst. The analyst provides
the following services to both educational and industrial users across the state:

General Support: The analyst provides assistance in establishing user accounts,
finding documentation and example inputs, program compilation and execution, and
other user support as needed.

User Training: The analyst provides introductory lectures, classroom training, and
one-on-one instruction on selected topics. This usually needs to be arranged in

�5

 Tip!

 HPC User Manual - 11th Edition � Introduction

advance, since there is travel budget for one trip per year to campuses outside of
Huntsville, usually spring semester.

Application Program Support: The analyst provides support for installation of
programs, limited optimization of code, in some cases use of application packages,
and resource management.

Outreach Support: The analyst assists in promotion of ASA resources to potential
academic and industrial users, through formal technical presentations,
demonstrations, and technical consultation.

Collaboration: A number of types of collaboration opportunities can be negotiated
on a case-by-case basis. These include hosting services at ASA, joint ventures for
acquisition and operation of systems, and specialized training.

�6

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

2. Computing Basics
This chapter contains general information on a number of topics. It contains an
introduction to computer science, and some topics of particular relevance to running
large mathematical calculations on supercomputers, also called high performance
computers. If you are new to using computing clusters with job queue systems, or
aren’t certain of the difference between data in memory and files on a disk, you
should read through these sections. Advanced users may find some information of
interest in the sections on data management, and processor compatibility.

Parts of a Computer
What do you see when you look at a computer... a keyboard, screen, and places to
plug in various types of cables. However, whether a computer is slow or fast, can
store large amounts of data, or do large calculations, is a function of unseen
components like the processor, memory, video card, and hard drive. Here are some
components of a computer that you should be familiar with.

The processor is a chip, sometimes several chips, on the computer motherboard. If
you look inside a desktop computer, the processor probably has a fan on top of it.
The processor is sometimes called the central processing unit, or CPU. The
processor takes a list of commands, called a program, and executes each command in
the appropriate order. Most computers today have multi-core processors. These are
simply multiple CPUs on a single computer chip. Each core is separate processor.
The SLURM queue system uses “CPU” to denote a processor core, not the entire
chip.

Note that this manual uses the terms “CPU” and “processor core”
interchangeably.

Processors have an internal clock with a speed expressed in gigahertz which is how
many billion instructions per second the processor can execute. The clock speed is a
reasonable way to compare two processors from the same manufacturer and
generation. However, clock speed can be misleading when comparing processors
from different manufacturers or generations. These points will be discussed in more
detail in the section on processor capability and compatibility later in this chapter.

To a computer everything is data, regardless of whether it is a program, music file, or
results from a quantum mechanics calculation. These various types of data may be

�7

Reminder

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

used in different ways, but they are all stored in the same way. The data in a
computer resides on a disk drive, or in memory, and at times in both locations.

The disk drive is a device that stores data files long term. There are various types of
disk drives such as the hard drive inside most computers, faster but smaller solid state
disks, and drives that access removable disks like CDs and DVDs. The disk drive is
non-volatile, which means that the files are still there when you turn off the computer.
Most of the files on the hard drive are not in use at any one time. Hard drives usually
have a very large storage capacity ranging from hundreds of gigabytes (billions of
characters) to terabytes (trillions of characters). A byte is a computer term for enough
memory or disk space to store a single character on a type written page.

When you start a program or open a file, a copy of the information is read from the
disk into memory. The memory is a computer chip which also stores data. The
computer processor can access the information in memory much, much faster than it
can access the information on a disk drive. However, memory is more expensive than
disk storage, smaller, and volatile, meaning that it goes away when the computer is
turned off. Most computers have a few gigabytes of memory, although the
supercomputers have several terabytes of memory.

To use computers effectively you should understand the difference between
memory and disk storage. Confusing the two in conversation can be an
embarrassing mistake.

The following are things that refer to disk storage.
• The capacity of a hard drive, disk array, CD, DVD, or USB flash drive.
• The information shown by the Linux commands ls, df, du, scp, sftp, quota, or

usage.
• Anything about your home directory disk quota, or tmp disk usage, or scratch

disk usage.
• File sizes shown by the Macintosh Finder, or Windows Explorer (not to be

confused with Internet Explorer), or other types of file browsers.

The following are things that refer to memory utilization.
• The information shown by the Linux commands top, ps, squeue, or sbatch.
• The amount of memory you request when submitting jobs to the queue

system.
• The “max memory used” value in the jobinfo command output.
• The Macintosh Activity Monitor, or Windows Task Manager
• Segmentation errors are a problem with the way the software is accessing

memory.

�8

 Tip!

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

A USB flash drive has non-volatile flash memory, so it works like a disk drive even
though it is made from computer chips. Many smart phones have flash memory only,
although internally there is a difference between what is stored in that memory for the
apps that are running and those that aren’t.

There is often no correlation between memory utilization and input file sizes. A
program that searches through a massive genome file may use very little memory if it
only reads a few hundred base pairs into memory at a time. A quantum chemistry
calculation on a small input file may require a large amount of memory if you
specified a large basis set. Likewise, the size of the program file says little about the
memory needs which include loading the program, data, and dynamic linked
functions into memory.

Computing systems are also described by their data transfer rates. Data transfer is
measured in bits per second, often megabits per second (millions of bits), or gigabits
per second (billions of bits). One byte (character) is made up of eight bits. You will
most often see these ratings when discussing computer network capabilities, but there
are also data transfer rates for the processor to access data in memory and to access
disk drives.

Computing Clusters
A desktop or laptop computer is meant for tasks that are instantaneous, or as close to
it as possible. In order to make these computers responsive, they are often sized with
enough memory to have many programs open at once. Also the processor is running
at a few percent of capacity and only spikes near it’s full capability when you perform
very mathematically intensive tasks, such as rotating your point of view in a 3D video
game. A personal computer tends to seem slow when waiting to access data on the
hard drive, or over a network, and seems very responsive when performing tasks with
data entirely in memory.

Now consider the task of running a quantum chemistry calculation on a significant
size molecule. To compute the molecule’s vibrational motion might take from one to
three days, depending upon the capabilities of the computer. Obviously, nearly
instantaneous calculation is not an option on any computer in existence. Rather than
having your computer freeze up for a couple days while this work is in progress, you
would like to send that work off to some other computer to be done and bring the
results back to you when it is completed. This type of batch processing model is how
computing clusters are designed to operate. There are standard ways of interacting
with these computer systems, although it is different from running desktop programs.
However, once you learn to use the HPC systems at the Alabama Supercomputer

�9

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

Center, you will find that other computing clusters like those at the national labs,
NASA, the Department of Defense, and big corporations are used in a similar manner.
High performance computing (HPC) is the currently trendy name for
supercomputers. These are also called computing clusters, beowulf clusters, or
just clusters. The next three paragraphs describe other types of large computer
systems.

A cluster is computer system that is made of many individual computers, but utilized
as one large computer. The HPC systems at the Alabama Supercomputer Center
(ASC) are clusters.

Grid computing is the name for a configuration in which multiple HPC systems are
interconnected. The current generation of grid computing systems are much more
complicated to work with than the more mature technology of computing clusters like
the ones at ASC. Grid systems will not be discussed further in this manual.

An on demand computing center is a cluster that can be segmented into smaller
clusters, typically to sell computing time to large businesses. These centers often
charge relatively high prices to customers, such as banks, who want access to a
system with heavy security.

The most common definition of cloud computing is being able put in a credit card
and immediately buy access to nodes, which might be set up as an HPC system, an
email server, or may require you to install and configure the operating system
yourself. Most cloud systems use virtualized servers. However, some companies use
the term cloud to refer to anything that is done on a server connected to the internet
instead of on your local computer, and a few use “cloud” in place of “cluster”.

The HPC systems at the Alabama Supercomputer Center are clusters. These are not
grid computing systems, on demand systems, or cloud systems. From this point on,
this manual will only discuss clusters like those at the Alabama Supercomputer
Center.

Today’s HPC clusters are not one big computer. They are a collection of computers,
usually with many computers mounted in a single rack, which are configured to be
used as one large computing system. Computers that mount in racks are often called
servers. Each server is a reasonably powerful computer with memory, processors,
and hard drives, but not individual screens and keyboards (they are accessed remotely
via a network). Each one of the computers is called a node in the cluster. In a
commodity cluster like the DMC, one of the systems at ASC, each node many have
eight or twenty processor cores and over a hundred gigabytes of memory. In a high
end system, like the SGI Ultraviolet at ASC, a node may have hundreds of processor
cores and terabytes of memory.

�10

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

In order get the most computing power for the dollar, HPC systems use hardware that
is at the high end of the commodity hardware, meaning components that can be
purchased from more than one company. This typically includes high end processors,
such as those in the more expensive desktops sold for video gaming enthusiasts, large
amounts of memory, and larger or faster disk systems than a desktop computer. As
such, a piece of software that runs on a single processor core will often take about the
same amount of time on a cluster as on a high end desktop computer. However, on a
cluster, software can be written to run faster by using more than one core as part of a
single calculation. It is also possible to do more work on a cluster by using a single
core for a calculation, but running hundreds of such calculations at the same time.

In order to use an HPC system, you need a way to tell it what software to run, and
what data file contains the input data. You also need a way to get the results when it
is completed. This should be something you can do from your desktop computer at
work, or your laptop computer at home. This is done through a login node. The
login node is just one of the servers in a cluster. The login node is where you can
type commands, read documentation, submit work to run, see the results, and access
files for the work you have in progress.

The login node can be accessed remotely over a network. This is done through a
network protocol called ssh. If you have a Macintosh or Linux computer, ssh is
already installed. Free ssh clients can be downloaded for use on Windows computers.
ssh gives you a text interface to type commands. Thus you type text commands, and
see the results as text. Most work on an HPC system is done in this text mode. Only
a few programs have graphical interfaces available. Most that do have graphic
interface options use the graphical program to prepare inputs and display results, but
still require you to exit the program and use the text interface to run the calculation.
Installing and using ssh is discussed later in this manual.

There are often many people working on the login node at the same time. Each
person has their own files in their own directory, called a home directory. Linux has
a whole system of permissions that allow you to work with your own files, but not see
other people’s files.

The commands that you type when you are logged in via ssh are Linux commands.
Linux is the dominant operating system in the HPC and server markets, where as
Windows and OS X (the Macintosh operating system) are more popular for personal
computers. Thus is it necessary to learn a handful of frequently used Linux
commands in order to use a HPC system. A short list of important Linux commands
is presented later in this manual.

�11

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

Most of the work done on a supercomputer is not run on the login node. You can do
small tasks on the login node, such as reading documentation. However, anything
that takes more than 10 minutes of CPU time (not 10 minutes reading things on the
screen) and a small amount of memory will be automatically killed on the login node.
To run calculations taking more than 10 minutes and more than 2 processor cores,
you submit the calculation to a job queue. You tell the queue system a few critical
pieces of information like what program to run, the name of the input file, how many
processor cores to use, and how much memory it needs. The queue system then
assigns the work to run on a compute node. Often all of the compute nodes are busy
and the job will wait a little while before it can run. However, you can submit many
jobs, log out, and come back later to check on them. You may refer to your work as a
calculation, or simulation, or something else, but the queue system refers to it as a
job. The queue system will guarantee that your job gets the requested resources. The
queue system provides commands for submitting jobs, seeing what jobs you have
running or waiting, and to kill a job if you so desire. After the job completes, the
queue system creates an extra file that contains a log of any errors and information
about how much memory your job used, whether it efficiently used multiple
processors and more.

The jobs actually run on compute nodes in the cluster, not the login node. HPC
systems often have one login node and hundreds of compute nodes. You can only
work interactively through the login node. You utilize the compute nodes only by
submitting work to the queue system. If you purchase your own HPC system, you
will also have to work with additional servers that manage the queue system,
passwords, software licenses, home directories, and backup copies of the files in your
directories.

Another aspect of a cluster is the file system. Your home directory is visible every
node on every cluster at the Alabama Supercomputer Center. This means that there
are over two thousand processor cores constantly accessing the same, large home
directory file system where everyone has their home directory. Clearly, a SATA drive
like you put in a desktop computer could not handle that type of use. The home
directories, software, and scratch directories are stored on a high performance GPFS
file system. This is a storage cluster which has processors, memory and hard drives.
The file you are using right now is usually pulled into the memory cache, even though
it still appears to be a file on disk. Because of this, the first time you access a file that
hasn’t been used in days there is a lag as GPFS pulls the file from slower, cheaper
hard drives to faster, more expensive media. Then you can work with the file
repeatedly for a few hours and the response is fairly quick.

Using a HPC system is fairly easy once you have learned a handful of commands.
Building or managing an HPC system is much more complicated as you must become

�12

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

an expert at using many Linux operating system commands and understanding many
technical details of how the system works.

Once you have learned a few of the basics of Linux, the queue system, and
transferring files to/from the HPC systems, you can focus on running calculations on
the system. If the software is already installed, there will be a README.md file
explaining how to configure your account for that software, submit it to the queue,
etc. You can find the README.md file using the ascdocs command. Another good
source of help is the HPC technical support staff, who can be contacted via email at
hpc@asc.edu

Numeric Precision
Consider the task of computing the area of a circle on a computer. You are aware of
the formula

 A = π r2

However, what is π? π is 3.14159... it goes on infinitely. Our computer doesn’t have
an infinite amount of memory to store an infinite number of digits of π, so how many
digits does it use?

Computer programs most commonly work with two different representations for
numbers, called single precision and double precision. Single precision means that
the number is stored in 32 bits of memory, which translates to about eight significant
digits in a base ten number. Double precision means that the number is stored in 64
bits of memory, which translates to about sixteen significant digits in a base ten
number. Each bit is a 1 or 0, a digit in a base 2 number system, called binary.

It is often necessary to use a higher precision in the computer program than the
desired answer. Consider a computer program doing the following.

 1.2476543 - 1.2475021 = 0.0001522

In this example, we started out with eight significant digits, but ended up with four
significant digits. This is called a loss of precision error. However, if you print out
the resulting number, it may print as 0.00015227834 Where did the extra digits come
from? Those extra digits are just garbage data that was hanging around in memory
from some previous calculation. This gives the illusion that you have an answer
accurate to eight significant digits, when you really have an answer accurate to four
significant digits. The field of numerical analysis is devoted to understanding these
types of issues and writing software that avoids these problems.

�13

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

We highly recommend that scientists or engineers who will be writing software for
mathematical simulations take a numerical analysis class.

In any floating point mathematical calculation the computer must deal with the last
digit that can be stored in memory. It can’t just round up if the next number is greater
than five, because it doesn’t have memory to store the next number and thus doesn’t
know what that number is. Statistically, that last number should round up half the
time and round down half the time, so randomly doing each half of the time is better
than always rounding up or down. This process is known as “unit round”, and
likewise introduces unit round errors when it guesses wrong. After multiple iterations
of a complex simulation, these unit round errors will accumulate so that the second to
last digit can no longer be trusted to be correct either. The exact algorithm used to
perform this unit round operation is different from one chip model to another, thus
resulting in getting slightly different answers when the program is run on different
models of CPU chip. This will occur even if the software is written correctly and the
hardware is functioning correctly.

Some programming languages use the term “float” for single precision and “double”
for double precision. A few languages use double precision all the time, even when
declaring variables as “float”. Some programming languages also support smaller
precisions with variables declared as “short” or “word” or some other name.

When 64 bits of precision are not enough it is possible to run higher precision
calculations. The processor doesn’t have hardware to work with larger numbers, so
the software must operate on part of the number, then if necessary cary a bit to work
on the next larger part of the number. In this way, any precision can be obtained but
the calculation will take much longer to perform. A popular way of doing this is to
write a program to use the GNU Multiple Precision Arithmetic Library (GMP). This
works, but is much slower than double precision mathematics. A few special purpose
software packages, such as mathematica, have built in support for high precision
computations, but calculations done using these packages run even slower yet
because of it being an interpretive language (not compiled directly to machine
language).

To make things a bit more complicated, x86 series processors do double precision
mathematics in 80 bit extended double precision inside the processor, then round
down to 64 bits to store the result in memory. This cuts down on certain types of loss
of precision errors.

�14

 Tip!

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

Data Management
In recent years, computer technology has advanced significantly. The downside of
this has been long term data storage. Removable storage has evolved from disk packs
(removable hard drive platters that go in a hard drive the size of a washing machine),
to various magnetic tape options, to eight inch floppies, to 5.25 inch floppies, to 3.5
inch floppies, to USB flash drives, and writable CDs and DVDs. At the same time,
the capacity of hard drives and solid state disks (SSDs) has increased immensely.
However, the lifetime of all of these media for long term storage of data is still rather
poor.

Newer flash memory may be warrantied for 5 years. Hard drives last 1-6 years. The
CD-Rs that you typically find in stores start to degrade after a few years. There are
more expensive archival quality CD-Rs rated for decades or even a century. Since
these haven’t been around 100 years, those ratings are based on theoretical
projections. Likewise, manufacturers claim that DVDs may have a life span up to 30
or 100 years, but there is no industry standard for verifying the lifetime.

An alternative to storing data on removable media is to keep it in a running computer.
To keep the data safe, there should be multiple redundancies and a budget to upgrade
storage systems and replace failed drives as often as necessary. The home directories
on the supercomputers are stored on a system with built in redundancy so that you
will not lose files if a single hard drive fails. There are also nightly backups of the
home directories, which are kept for only two weeks. However, the free academic
accounts on the supercomputers provide only a modest amount of home directory
disk space. It has always been the policy that it is the user’s responsibility to transfer
the data back to campus for permanent storage.

The /scratch disk area is visible to all of the nodes on both HPC systems. The scratch
area is for work in progress. Any data left on /scratch is automatically erased one
week after the calculation completes. There is no backup of /scratch. Thus any data
files left on scratch must be transferred elsewhere within a few days if they need to be
kept. As such, your work flow in /scratch should look like this;

1. Create a directory in /scratch. Many people use their account name as the
directory name, perhaps with something added on to identify which job is
running in that directory.

2. Copy data needed by a job to your directory in /scratch.
3. Run one job that uses the files in that directory.
4. Within a week of when that job completes, copy any needed results back to

your home directory or to campus.
5. Delete your directory in /scratch.

�15

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

6. Repeat this process, creating a new directory in /scratch for every job you run.

Clearly it is easier to work from your home directory than from /scratch. Your home
directory disk quota can be increased up to a point (currently 1 TB) by requesting
such from hpc@asc.edu For more than that you need to pay for additional home
directory space. The /scratch area gives you access to ten times as much disk space as
your home directory at no monetary cost, but at the expense of the additional steps in
your work flow.

WARNING: Do not try to use /scratch as long term storage. Data files left in
scratch may be automatically erased if they are more than a week old. Trying to
cheat that system with the “touch” command does not work. If you need to save
large amounts of data and do not have storage space on campus, contact the HPC
staff for information on purchasing additional home directory space.

Each compute node of the DMC also has a /scratch-local disk area that is not visible
to any other node. This is for running jobs to use a disk system that is faster than
home or scratch. The /scratch-local area also uses a file system that can handle
extremely large numbers of small files. However, you cannot see the compute node
scratch-local area from the login node (which has it’s own, different /scratch-local
area). To use the /scratch-local area, your job script should include the following
steps;

1. Create a directory in /scratch-local. Use a unique directory name since two of
your jobs may end up running on the same compute node.

2. Copy input data to the directory.
3. cd to the new directory.
4. Do the calculation in that directory.
5. Copy output data back to your home directory. If your job creates a very large

number of files, the “tar” command can be used to archive many small files
into a single large file in your home directory.

6. cd to your home directory
7. Erase the directory from /scratch-local.

Shared file systems like /home and /scratch do not handle very large numbers of files
in a single directory well. Thus use of /home and /scratch is limited to 500,000 files
per user. Even at 500,000 files per user, your work will run very slowly due to
bogging down the file system metadata server (part of the file system server). Work
requiring tens of thousands of files should be done on /scratch-local which handles
that type of usage much better.

Files stored in shared directories count against all disk quotas of the user who
originally wrote a given file to that directory.

�16

!

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

There is a separate file storage area under the directory /opt/asn/bio. This is an area
where publicly available genomes can be staged. This saves on home directory disk
space since everyone in the research group doesn’t need to use their home directory
space for public genome files. All users of the HPC systems can read the files in this
area, but not write any data to this directory. To have a genome file staged here,
contact the HPC technical staff at hpc@asc.edu This is a static storage area, so none
of the files here are updated unless you contact the staff to request a new version.

Processor Capability and Compatibility
In the 1980s and 1990s, computer processors became significantly faster as the
internal clock speeds increased from a few kilohertz to megahertz to gigahertz. If this
trend had continued, today’s processors would be running at hundreds of gigahertz.
However, fundamental laws of physics have put a cap on clock speeds with high end
processors being around four gigahertz for a number of years now.

Computer processors have continued to get higher performance, by other means. One
of these is implementing dedicated circuits for complex instructions. For example,
very early processors had circuitry to add numbers then performed multiplication as
repeated additions, thus taking many clock ticks to multiply. Later processors have
had dedicated circuitry to perform a multiply in a single clock tick. Other tricks
include having secondary math coprocessor chips, and building processors with
multiple floating point math units.

The x86 series processors that are in most laptops and clusters today have improved
performance by supporting vector math instructions. These are instructions that
perform a given mathematical operation on multiple numbers at once. There have
been multiple generations of vector instructions with names like MMX, SSE, and
AVX built into various models of computer processor.

These vector instructions can be utilized fairly easily by recompiling software,
sometimes with an additional compile flag. However, if you compile software to use
the AVX instructions in the most recent computer chips in the UV, it will not run on
some of the slightly older processors in the DMC. It is possible to compile software
to be compatible with the 386 chips from the early 1990s, which allows it to run on
every x86 processor in use today, but it will run slowly everywhere. When you
purchase commercial software with an automated installation program, it installs the
correct files for your computer, thus hiding these issues from you. However, when
you start compiling your own software on a supercomputer, processor compatibility
and performance becomes part of your job. The following are some notes on
compatibility issues.

�17

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

There is a text file on all Linux computer systems named /proc/cpuinfo. That file
contains information about the model of processor and what types of instructions it
supports. Knowing this, you can compile several copies of your program with
compile flags that give optimal performance on multiple processor models. You
could then have the script that you submit to the queue look for specific entries in that
file, then select which executable to use appropriately.

MPI (message passing interface) is a message-passing standard for distributed
memory parallelization of software. The UV and DMC use different MPI library
implementations. Thus MPI software must be compiled to run on one or the other,
but cannot be compiled to run on both. The DMC is usually the better system for
running MPI parallelized software.

OpenMP, a shared memory parallelization model, is available on both systems, and
compatible between them.

The UV has Sandy Bridge series processors, which support AVX instructions (256 bit
vectors) as well as older vector instructions like MMX and SSE (128 bit vectors).
Some nodes in the DMC have slightly older processors that support MMX and SSE
instructions, but not AVX instructions. As such, software compiled for AVX on the
UV will not run on older DMC nodes that lack support for these instructions.
However software compiled for SSE on the DMC will often run on the UV.

Software that can make significant use of AVX instructions may run twice as fast as
software that uses SSE instructions. Later in this manual, we will give examples of
how to write a script to select which program to run if you have compiled software to
utilize both.

The command “file_info <file_name>” is an extension of the Linux “file”
command. file_info will tell you if an executable file contains SSE or AVX
instructions, in addition to giving information about what type of file it is.

Benchmarking
Benchmarking is the process of testing software to see how long it takes to run. This
is typically done when writing software to be used on a computing cluster. To do so,
the software developer will use a tool called a profiler to determine which parts of
the program are taking the longest to execute. Then the software developer will use a
number of optimization techniques to make the program get the exact same answer
more quickly. Then a profiling or benchmarking calculation is rerun to see how much
faster the software runs.

�18

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

The supercomputers are configured to be useful for many types of work, but
benchmarking is not one of them. As such, the supercomputers at the Alabama
Supercomputer Center are a poor choice for benchmarking work. If you run the exact
same calculation multiple times on the supercomputer the time it takes will vary,
sometimes significantly, from one run to the next. This is for a number of reasons.

• The HPC systems are upgraded annually, often with different processor
models. As such, your calculations may be running on different processor
models on successive runs.

• The HPC systems are a shared resource. Your job(s) accessing files in the
home directory is one of thousands of jobs accessing the home directory, so
expect variations in access speed from one second to the next.

• There are other programs running on the same compute node. This load on
the node creates contention for memory access and local disk access, thus
changing the execution speed of your program based on what the other jobs
are doing.

All of these are due to the supercomputers being configured to maximize the amount
of work that can be done on them. However, this means that the best way to
benchmark your program is to run it on a desktop computer with nothing else running
on it, or a cluster architected for benchmarking.

GPUs
The HPC community has used a number of types of math coprocessor chips over the
years. The DMC cluster has nVidia GPUs (Graphic Processing Units). Support for
these chips has been building momentum in the market for the past few years. As this
version of the user manual was being written, eight software packages on the system
were supporting GPUs, and software tools for writing software to use GPUs are
available.

GPUs are an adaptation of the technology in a high end video card, like those that are
ideal for video gaming. GPU chips now have hundreds or thousands of processor
cores on them, initially so that game physics could be offloaded to the video card.
However, many processor cores on a chip can also be useful for running
mathematical simulations more quickly. nVidia makes GPU chips that are designed
for HPC by giving them a significant amount of double precision mathematics
capability (video cards only need single precision). nVidia also developed the CUDA
programming language, which allows programming software for GPU chips in a
language that is similar to C. Today there are a few different programming languages
available for GPU chips.

�19

 HPC User Manual - 11th Edition � Introduction to High Performance Computing

The reason that GPU chips are popular is because these chips give more processing
power for the dollar spent than conventional processors. At the time this was written,
the small testbed of 32 GPU chips in the DMC provided more single precision
processing capacity than the other 1800 conventional processor cores in the DMC.
The trade off that allows GPU chips to be so powerful is that they are SIMD (single
instruction multiple data) processors. This means that every core on the GPU chips
has to be running the same function, but each can be running that function on a
different piece of input data. As such, a GPU is not a general purpose processor, and
cannot be the main processor for a computer, only a secondary coprocessor. The
disadvantage of GPUs is that software has to be rewritten to use these chips.

There are other types of math coprocessors, although not available on the ASC
machines. ASC had a Cray XD1 from 2004 to 2009 which had FPGA chips. The
Xeon Phi chips currently under development are a many core version of the x86
series processors. At the time this was written, the Knights Landing processor, the
successor to Xeon Phi chips, appeared promising, but were not yet available for sale.

�20

 HPC User Manual - 11th Edition � Account Administration

3. Account Administration
In order to use the supercomputers, users must get an account which consists of a user
name, password, and disk space to store files. From that account, small jobs can be
run on the login node, and larger jobs can be run on the compute nodes via the queue
system. There is a wide selection of software available.

Requesting an ASC Account
There are three types of accounts on the supercomputers; academic accounts, class
accounts, and commercial accounts. Each user must have a separate account on the
supercomputer.

Academic Accounts
Academic accounts are free for academic usage by faculty and students at the public
educational institutions in Alabama. Academic usage can be class work, thesis
research, or work to be published in the peer reviewed literature. Work that will
become the unpublished property of the funding organization is not eligible to be
done in an academic account, but can be done in a commercial account.

To request an academic account, the user should submit an ASA HPC Annual Grant
Request Form. This form is on the web at.

http://www.asc.edu/cgi-bin/account_request.cgi

NOTE: You must use your campus email address when applying for an academic
account. The account request will be denied if you use a commercial email
address such as gmail, hotmail, or yahoo.

Many people ask about the CPU Hours item on the account request form. This CPU
hours request is not a hard limit. You can still keep running jobs when that many
hours are used up. The supercomputer center staff uses the CPU hours for planning
based on users anticipated needs. The applicant needs only fill in their best estimate.
If other people in the same research group are doing this type of work, they may
know how much they are using (ask them to login and type "usage" which shows year
to date usage). Student taking a parallel programming class typically use 10 - 100
hours. Graduate students occasionally doing calculations typically use 1000 - 5000
hours. Graduate students doing all of their thesis work on supercomputers typically
use 200,000 - 500,000 hours per year.

�21

!

 HPC User Manual - 11th Edition � Account Administration

After completing the form, click “Submit Grant Application”. This will create a
second page summarizing the information that was entered. This second page must
be printed, signed, and faxed to 256-971-7491. Once the account is created, the user
is notified by email and given additional information on using the account. Users are
typically notified within three business days of when the faxed form is received.

Each year after receiving an academic account, the user will receive an email
reminder to again fill out the account request form on the web. It is not necessary to
fax anything in when filling out an annual renewal. If the renewal form is not filled
out, the account is locked, and the student’s research adviser is contacted to see if
they need the files, then the account is erased.

Class Accounts
Class accounts are for the use of students enrolled in a course using the HPC systems
for homework assignments. Like academic accounts, access to class accounts is free.
Unlike academic accounts, class accounts are deleted at the end of the semester. In
order to obtain class accounts, the instructor should contact the HPC staff at
hpc@asc.edu In order to create the accounts, the staff will need to know the name of
the course, the number of accounts required, and any software packages that will be
used. The account passwords are provided to the instructor. Course instructors are
advised to keep track of which account has been assigned to each student.

Commercial Accounts
Commercial accounts are available for the use of individuals in industry, government,
private academic institutions, and academic institutions outside of Alabama.
Commercial account time is purchased in advance and charged by the dedicated hour.
Hours purchased must be used within 12 months of the date that the purchaser gets
their account on the machine.

To obtain a formal written quote for CPU time, contact Donna Daniel, ASA Director
of Client Services, at ddaniel@asc.edu or 334-242-0175.

Some of the software packages at the center can be used at no additional cost, while
others require an additional license fee for commercial usage. For information on
commercial software pricing, include the list of desired software packages in the
request for quote that you send to Donna Daniel.

Feel free to contact technical staff at hpc@asc.edu if you have any technical
questions. Contact Donna Daniel for financial questions.

�22

 HPC User Manual - 11th Edition � Account Administration

Acknowledgement

We ask that any publications from work done with academic or class accounts contain
an acknowledgement. Here is a sample, which can be reformatted as necessary for a
given publisher.

 This work was made possible in part by a grant of high performance
 computing resources and technical support from the Alabama
 Supercomputer Authority.

Disk Quotas
Each account has a quota that limits how much data can be stored. There is a soft
quota and a hard limit. When the soft quota is exceeded, an error will be displayed
when the user logs in on the system, and queue scripts provided by the staff will
refuse to submit new jobs to the queue system. When the hard limit is reached, no
additional data can be written to the account, which can result in having the running
jobs halt execution.

When an account is created, a small quota is put in place (20 GB). Users can request
up to a 1 TB quota (1000 GB) at no additional charge. Users can purchase additional
disk space. Requests for a larger quota can be emailed to hpc@asc.edu . Requests
for quote to purchase disk spaces larger than 1 TB can be sent to Donna Daniel, ASA
Director of Client Services, at ddaniel@asc.edu or 334-242-0175.

It has always been the policy that the Alabama Supercomputer Center systems
are not intended to be used for permanent archival or storage of data. The home
directory on the supercomputers is intended to be used for work in progress.
Completed work should be transferred back to campus for permanent storage on
the appropriate system there. The formal policies of the Alabama
Supercomputer Authority are on the web at http://www.asc.edu

The “quota” command presents disk utilization information to the user. By default,
“quota -q” is run during the login sequence for all user accounts. The following are
the most frequently used options.

 quota [-q]

 -q show information only if the user is over their quota

�23

Reminder

 HPC User Manual - 11th Edition � Account Administration

The “filecount” command lists how many files are in each subdirectory tree
under the current directory. This is useful for determining where you have many files
stored if you are over the account limit of 500,000 files. The stored data that allows
filecount to run quickly is updated nightly.

The usage command gives a larger listing of information about the users computer
use. It is invoked by simply typing

 usage

This shows information for a user including disk quota, CPU hours used, login status,
queued jobs, unix group membership, and system access.

The amount of disk space taken up by individual files can be displayed with the
command

 ls -l

The amount of disk space entire directories take up can be displayed with the
command.

 du -sk <directory_name>

�24

 HPC User Manual - 11th Edition � Computer Security

4. Computer Security
The high performance computing (HPC) systems are set up to allow you to focus on
your area of expertise. The intent is that you will need to put a minimal amount of
effort (but still some) into learning the nuts and bolts of the queue system and Linux
operating system. However, there are some rules and security practices to be
followed. This is to protect you and the other people who use the HPC systems.

The following is a discussion of good security practices, both for using the HPC
systems and for using any computer. If you have any questions or concerns, contact
the technical staff at the Alabama Supercomputer Center at hpc@asc.edu

Accounts
Every user should have their own account. If there is a reason you need to access
data or software in another person's account, there are mechanisms for making that
possible while still using your own account. Some preferable alternatives are:

• You can email hpc@asc.edu to request the creation of a shared directory for
sharing files with research group members, or class members.

• If you want to allow others to access your account files from their account, set
read access only. Setting global write access also allows anyone to delete all of
your files, which can happen by accident.

Each year, you will get an email reminder to renew your account by filling out a web
form. You need the account name (but not the password) to be filled in on that form.
If you don't fill it out, you will get reminders again the next two months. If the web
form is not filled out, the account will be deactivated.

When an account renewal is not done, we contact the research adviser listed on the
account request form to see if they want the student's research files before deleting
the account.

Passwords
Do not share your password with anyone.

It is not necessary to give a password to the Alabama Supercomputer Center technical
staff when you contact them, or they contact you. Note that simply hitting "reply" to
the email that sent you your password sends the old message with the password back
to the person that sent it, which should not be done.

�25

 HPC User Manual - 11th Edition � Computer Security

Yes, you might have to keep your password written down so you don't forget it, but
don't leave it on a post-it note on the monitor where anyone walking into the room
can read it. A list of passwords on paper can be well hidden, or there are good free
encrypted password database programs such as KeePass.

WARNING: Having your username written on the same piece of paper with the
password means that someone who finds it has everything they need to access your
account.

It is easy to find yourself with dozens or hundreds of passwords. Yes, most people
use some passwords in more than one place. However, it is highly recommended that
any password attached to money such as a bank website, credit card site, or retirement
account is a completely unique password that you don't use anywhere else. It is also
best if the password you use for work related accounts is not also used for non-work
accounts.

We recommend against allowing a web browser to store passwords as this is
frequently the target of hacker attacks.

WARNING: In July, 2016 a federal appeals court ruled that sharing passwords can
be a violation of the Computer Fraud and Abuse Act.

There are illegal hackers who use an automated programs to try using millions of
passwords to break into accounts. Thus anything that those programs would try as
likely possibilities are a poor choice for a password. Here are some examples of
BAD PASSWORDS.

• no password (don’t leave any account or computer without a password)
• asndcy (password same as the account name is easily guessed)
• Rhino (a word in the dictionary)
• Fido (hackers try words from your social media posts)
• abc123 (popular sayings, song lyrics, book titles, people)

When setting a new password on the HPC systems, the password program will tell if
the word you chose is insecure, and what is insecure about it. Typically a good
password is a seemingly random mixture of letters, numbers, and symbols.

�26

!

!

 HPC User Manual - 11th Edition � Computer Security

Image courtesy of XKCD

Data Security
What if you accidentally delete a file that you need?

• If the file is on /scratch or /scratch-local, it is gone and cannot be recovered.
You will have to recreate the file.

• If the file has been in your home directory for 24 hours or longer, it can be
restored if you contact the HPC staff SOON. There are nightly backups of the
home file system, but those backups are only kept a couple weeks.

• If you created the file the same day you deleted it, again the file is gone and
will have to be recreated.

�27

 HPC User Manual - 11th Edition � Computer Security

There are times when you want to backup a file every few minutes or hours, such as
when writing software. The nightly backups are not very useful for this, but here are
some other options to consider.

• Some text editors can be configured to keep one previous version of the file
with a slightly different file name.

• You can frequently copy the file to another directory.
• If you have a Subversion repository on campus, you can use the subversion

commands to put new versions into the repository.
• You can use the Mercurial version control software to make a repository of

old file versions in your home directory.
• You can utilize a web service for storing source code, such as bitbucket.org,

sourceforge.net, or github.com

Note that the HPC systems are not a permanent archival or storage system. Once you
are no longer using files, they should be deleted or transferred back to campus for
permanent storage in the appropriate manner on campus.

In Linux systems, every directory and file has permissions associated with it. There
are permissions for what you can do to the file, what your group members can do, and
what everyone else can do. By default, no one can see the data in your home
directory, but it is possible for you to change that. The Alabama Supercomputer
Center uses the group permission for everyone in your department. Do not set global
permissions (777 or rwxrwxrwx) unless you are sure you want everyone on earth to
be able to read, run, and delete that file.

Monitoring
The account request that you signed includes a clause stating that you consent to
monitoring of your account for the purpose of enforcing the acceptable use policies
only. At present the technical staff goes into your account only when you ask for help
or something indicates a problem with your account or usage.

The HPC technical staff may proactively contact you if there is a problem with your
account or a queued job. However, the person contacting you will NOT ask for your
account password.

Acceptable Use
Free academic accounts are available for faculty, staff and students at the public
schools in Alabama. Academic usage includes;

�28

 HPC User Manual - 11th Edition � Computer Security

• Work for class assignments
• Work for a thesis project
• Work to be published in the peer reviewed literature

Work paid for by an organization that will receive the unpublished results can not be
done with a free account... but the Alabama Supercomputer Authority can sell you
time on the HPC systems to do such work.

Things that should NOT be done with your HPC account include;

• Transferring music, video, images or other files for personal use.
• Sharing files with your friends.
• Anything that is a violation of a software license agreement. The software

license agreements are in the documentation directory for any software
installed on the HPC systems, which is accessible via the ascdocs command
or show_license command.

• Any other illegal activity, such as hacking into computer systems you are not
authorized to use.

• Mining for bitcoins or other digital currency.
• Anything that is not part of your assigned school work.

The official acceptable use policy is at http://www.asc.edu/html/accusepol.shtml

Fraud
There are many types of computer fraud in today's world. Identity theft fraud is very
common. This is when someone steals or tricks you into giving information like your
social security number, credit card information, birth date, mother's maiden name,
passwords, or details of your credit history. This information will eventually be used
to steal money from you in some way. It might also allow someone else to use your
accounts, so that it looks like you were the one committing their crimes. Identity
theft can also be used to gain access to something of value, such as usage of HPC
systems.

No one should ask for your password. The HPC system administrators do not need to
ask for it. Likewise, your bank or credit card company will not call you up or email
you to ask for your password. If someone asks for your password, this is almost
certainly a case of fraud. Do NOT give out your password.

One hallmark of fraud is when someone contacts you to ask for something, such as
“verifying their records”. If in doubt, tell them you will get back to them. Then
contact the legitimate organization in person or using a web address, email or phone

�29

 HPC User Manual - 11th Edition � Computer Security

that you know to be correct (NOT the one provided by the person or email that
originally contacted you). Some fraud contacts will seem to know a large amount of
information about you such as your credit card number, and may need just one more
thing such as the security code on the back of the credit card to steal your money.

Likewise, websites you visit cannot see what is on your computer, so a website
should not offer to fix some problem it claims to see on your computer. This is just
another type of fraud disguised as a repair utility.

Other common fraud attempts include the following;
• An email or text from a loved one saying they need money urgently.
• Someone you never met wanting you to deposit their money in your account.
• You just won a prize for something you didn’t enter.
• Here is a receipt for something you didn’t buy. That might mean someone has

already gotten your credit cards. Or it might be that the “receipt” is not a
document but a program that will install a virus on your computer.

• Blackmailware is a virus that says it will do something bad unless you pay
them money.

• You develop a long distance relationship with someone you never met, who
then asks you for money.

• Ransomware may lock up your computer or encrypt your files, then asks for
money to get it back. Some of these still delete your files even if you do pay.

• A call from the “customer service department” that doesn’t specify the
organization.

• You have been pre-selected for something.

If you see something odd that seems wrong, or unnecessary, or unexpected, it is often
best to verify that it is legitimate from some independent source before giving any
information. You can also ask them to send you the information through the U.S.
Postal Service. Many fraudsters will not use the regular mail because it is easier to
track and the penalties for mail fraud are more severe.

Other good places to find out if something is legitimate.
• The Better Business Bureau https://www.bbb.org/ lists business ratings and

complaints
• Angie’s List will have reviews of other people’s experiences with a business

https://www.angieslist.com/
• Snopes http://www.snopes.com/ lists internet hoaxes, many seen via social media

or email
• Use https://www.google.com/ to search on something along with the word

“reviews” or “complaints”. Keep in mind there may be a few good reviews posted
by a fraudster or business owner, and a few bad ones posted by their competition.

�30

 HPC User Manual - 11th Edition � Computer Security

• The National Do Not Call Registry https://www.donotcall.gov/register/reg.aspx
allows you to exempt your phone number from sales calls. If your phone number is
on this list, legitimate businesses will not call you, so any sales call you get is
probably a fraud attempt.

Malware
The policies of the Alabama Supercomputer Authority require users to take
reasonable steps to secure any computer connected to the Alabama Research and
Education Network, which includes almost every school campus in Alabama, and
home computers used to connect to the HPC systems. There are a number of
implications of this.

Computers, especially those running Windows, should have some type of virus
protection software installed. Updated virus definitions and operating system security
patches should be installed on a regular basis.

There are some websites you should not visit, and web links you should not click.
Some of these will attempt to hack your computer in some way. Some of the searches
that are most likely to take you to such websites include “free music download”,
“work from home”, and the names of popular celebrities.

Email can be another source of viruses. Do NOT open attachments unless it is
something you were expecting to receive from someone you know.

A big step in protecting your computer can be to review the configuration settings in
the web browser you use most frequently. There are a wide variety of options for
various browsers on various operating systems. Here are some suggestions, most of
which allow you to make exceptions if there is just one place that you need that item.

• Turn off third party cookies and site data. Unfortunately there are some
legitimate services that require this, such as free email account which use
those cookies for the advertising that pays for the service.

• Do not store passwords or form values in the browser.
• Do not allow sites to handle protocols.
• Block pop-ups.
• Do not allow sites to track your physical location.
• Do not allow sites to show desktop notifications.
• Do not allow sites to disable the mouse cursor.
• Do not allow sites to access the microphone or camera.
• Do not allow plug-ins to access your computer.

�31

 HPC User Manual - 11th Edition � Computer Security

Government Security Requirements
The HPC systems are NOT certified for use with data that falls under federal controls,
such as HIPAA, the DoD classification system, or ITAR.

A federal government law called FISMA (Federal Information Security
Modernization Act) gives the National Insitute for Standards (NIST) responsibility for
setting computer security standards that apply to all federal agencies. NIST has
released NIST SP 800-53 and NIST SP 800-171, both of which set security standards
for computing systems that handle "engineering and research data". Some federal
agencies may issue additional clarification to these standards as they apply to that
agencies work.

Starting in 2017, academic researchers who receive funding as a “subcontractor” to a
federal agency must do that work on 800-171 compliant systems.

For academic researchers who receive funding from federal agencies as a “grantee”,
the compliance date had not been set as of this writing (July 2016). However, the
discussion in the security community is that this is only a matter of "when" not "if" it
will happen.

Regardless of which category a researcher may fall in, the computer system as a
whole either is or is not compliant. The same rules must apply to all users.

At the time this manual was written (July 2016) the HPC systems were not compliant
with NIST SP 800-171, although it was under investigation. Contact the HPC staff at
hpc@asc.edu to find out the current status of 800-171 compliance.  

�32

 HPC User Manual - 11th Edition � Supercomputer Hardware

5. Supercomputer Hardware
There are two high performance computing systems at the Alabama Supercomputer
Center. One is a shared memory system, consisting of a large SGI Ultraviolet 2000
node and it’s associated login node. The other is a locally architected fat node cluster,
called the Dense Memory Cluster (DMC). This section of the manual describes the
hardware configuration of these systems. The systems are often upgraded annually.
Thus the most recent specifications on the number of CPUs and amount of memory,
can be found on the web at;

 http://www.asc.edu/supercomputing/hardware.shtml

The supercomputers are connected to the Alabama Research and Education Network
(AREN), which provides high speed network lines to the academic institutions in
Alabama, as well as connections to the Internet and Internet 2. Connections to the
supercomputers pass through a firewall, which excludes traffic from outside of the
United States. Only encrypted connections are allowed to the supercomputers. Thus
the primary means for connecting are ssh, scp and sftp. Telnet and ftp connections
are not allowed.

There are several other security mechanisms in place. Users can change their
password with the “passwd” command, but it will only accept passwords that are
not readily broken by common computer hacking tools. The default home directory
permissions prevent users from seeing files owned by other users. Users may alter
these permissions to allow others to see all or part of their files.

Each cluster has a login node for interactive work (uv.asc.edu and dmc.asc.edu).
The same password is used for both login nodes. Changing the password results in
changing it both places. The same home directory and files are also visible on both
systems.

Users compiling their own software must keep in mind that software compiled on the
UV will not always execute on the DMC and vice versa. This is because the two
systems use different MPI libraries, and the UV supports the use of AVX instructions,
which are not supported on some nodes in the DMC. Both clusters are capable of
executing generic 32 bit x86 linux executables, provided they do not use MPI.
However, the systems are configured to compile 64 bit executables by default, and
run them efficiently. Thus users writing their own software are advised to compile

�33

 HPC User Manual - 11th Edition � Supercomputer Hardware

that software on the supercomputers in order to take advantage of the performance of
these 64 bit systems and avoid library compatibility problems.

Both clusters share the same SLURM queue system. This means that, for example,
jobs submitted from the DMC login node may get run on the UV. Jobs submitted
with the run scripts provided on the system will run anywhere the desired software is
available. Users writing their own software can submit it to the queue with the
“run_script <filename>” command, which will prompt the user to specify
where the job should be allowed to run. The queue system is described in more detail
later in this manual.

run_script <file> Runs a job on a single processor, or
 multiple processors on the same node.

run_script_mpi <file> Runs a job using processors across
 different nodes, but all on the same cluster.

Supercomputer systems can be broadly categorized as shared memory systems,
distributed memory systems, and hybrid systems. On a shared memory system,
parallel software will run on a single node. A node is a collection of CPUs that run
under the same instance of the operating system and can access all of the memory on
the node. On a distributed memory system, parallel jobs can use CPUs on different
nodes and communicate via some manner of message passing network. With the
emergence of dual core and quad core CPUs, the majority of computing clusters
today are hybrid systems which have multiple CPU cores on each node, but can also
allow parallel jobs to run across multiple nodes. The SGI UV is a single, big shared
memory node. The DMC is a hybrid cluster.

WARNING: Software will only run in parallel (using multiple CPU cores) if the
software has been specifically written to run in parallel. In that case the
documentation will talk about parallel execution using a given mechanism such as
MPI or OpenMP.

SGI Ultraviolet Shared Memory Supercomputer
The ASA SGI Ultraviolet 2000 system consists of a single, large compute node and a
small login node. The compute node has 256 Sandy Bridge architecture Intel
processors and 4 TB of memory. The compute node can be expanded if demand and
funding should so dictate. The login node (uv.asc.edu) has 16 CPUs and 64 GB of
memory. There could be hundreds of people logged in and using this login node
simultaneously.

�34

!

 HPC User Manual - 11th Edition � Supercomputer Hardware

The SGI Ultraviolet is physically constructed of horizontal blades in order to fit many
processors and memory DIMMs in a single rack. Communication between blades is
handled by a NUMAlink switch on the back plane. These are 2.4 Ghz Intel Xeon
processors, which gives a total maximum result rate of 5.19 TFLOPs for all of the
cores combined. These Sandy Bridge architecture Xeon processors support the use of
AVX (256 bit vector) instructions, which can potentially give a 2X performance
improvement over the previous generation of Xeon processors which utilized SSE
(128 bit vector) instructions. The website http://www.asc.edu/supercomputing/
hardware.shtml should be consulted for the number of CPU cores and amount of
memory currently installed.

�35

Figure 5.1

The file system and network infrastructure.

 HPC User Manual - 11th Edition � Supercomputer Hardware

Dense Memory Cluster
The Dense Memory Cluster (DMC) is a fat node cluster which was architected at the
Alabama Supercomputer Center. It was put together from some commodity
components, and some components that were already on hand at the Alabama
Supercomputer Center. Hardware and software components for the DMC were
obtained from Microway, Penguin, Cisco, Voltaire, SchedMD, Dell, Novell,
Mellanox, Avocent, and DDN. This cluster was designed as a hybrid system with
each compute node pushed as far towards a big memory, shared memory
configuration as commodity hardware would allow. This was done to create a cluster
that could run the majority of the jobs at the Alabama Supercomputer Center at an
optimal price point. The DMC and UV are integrated into a common file system and
queue system, as shown in Figure 5.1 .

The DMC nodes were purchased over several years. Each purchase was influenced
by available technology, and the needs of the user community. The node
configuration is listed in Table 5.1 . All of the nodes currently have processors that
can execute four floating point operations per clock tick, through the use of 128 bit
SSE vector instructions. The Xeon E5-2670v2 chips can execute eight floating point
operations per clock tick, through the use of 256 bit AVX instructions. Most of the
DMC nodes (except some with GPU chips) are physically configured as “twin-
squared” systems with four complete nodes in each 2U of rack space, as shown in
Figure 5.2 . All nodes have redundant power supplies.

�36

Table 5.1 DMC Nodes

Nodes Cores Memory Processors
dmc 8 24 GB 2.26 GHz Intel Xeon E5520 quad-core
dmc1-dmc4 20 128 GB 2.5 GHz Xeon E5-2670v2 + 4 Kepler GPUs
dmc5 - dmc40 20 128 GB 2.5 GHz Intel Xeon E5-2670v2 10-core
dmc61 - dmc124 8 24 GB 2.26 GHz Intel Xeon E5520 quad-core
dmc125 - dmc128 8 24 GB 2.26 GHz Xeon E5520 + 2 Tesla GPUs
dmc129 - dmc156 8 24 GB 2.26 GHz Intel Xeon E5520 quad-core
dmc157 - dmc172 16 128 GB 2.3 GHz AMD Opteron 6134 8-core
dmc173 - dmc196 16 128 GB 2.3 GHz AMD Opteron 6134 8-core
dmc197 - dmc200 16 32 GB 2.4 GHz Opteron 6136 + 2 Fermi GPUs

 HPC User Manual - 11th Edition � Supercomputer Hardware

At the time this manual was written, the DMC had a total of 2216 CPU cores and
12.6 Terabytes of memory. The website http://www.asc.edu/supercomputing/
hardware.shtml should be consulted for the number of CPU cores and amount of
memory currently installed.

The DMC is periodically updated and old nodes are decommissioned. Prior to
January 1, 2013 nodes dmc1-dmc20 had 3.0 GHz AMD Opteron 8222 dual-core
chips. Prior to Jan 1, 2014 nodes dmc21-dmc60 had 2.3 GHz AMD Opteron 2356
quad-core chips. The login nodes are also periodically updated.

The DMC can run shared memory parallelized applications up to the 20 CPU cores
on a single node, or it can run distributed memory parallelized applications across
multiple nodes. Message passing between nodes goes across an Infiniband network.

The DMC nodes connect to the same home directory and applications file systems
that are used by the SGI Ultraviolet. Likewise, both see the same /scratch file system.

NVIDIA Tesla GPU Accelerators
Some of the DMC nodes also have specialized NVIDIA Tesla hardware accelerators
attached. These accelerators leverage recent advances in commodity graphics
processor technology to provide significantly higher performance than a traditional
CPU for certain classes of applications. There are currently three generations of GPU
chip installed. The oldest generation are Tesla 10-series processors with 240 cores on

�37

Figure 5.2

Multiple compute nodes fit in
each rack mount server in
the DMC. Each node has
8-20 cores.

 HPC User Manual - 11th Edition � Supercomputer Hardware

each chip, followed by Fermi processors with 448 cores, and Kepler chips with 2496
cores on each chip.

A single Tesla 10-series GPU supports a peak of 933 GFLOPs when performing
single-precision floating point operations and 78 GFLOPs when performing strictly
double-precision floating point operations. For comparison, the conventional 64-bit
processors in the DMC nodes can provide up to 9.2 GFLOPs per core. To support
this high rate of computation, each GPU also includes 4 GB of dedicated memory that
provides 102 GB/s peak memory bandwidth compared to 10.6 GB/s per processor for
the AMD Opteron processors in a DMC node.

Each Tesla S1070 contains four GPUs that are attached in pairs to DMC compute
nodes via PCI Express cables. At the time this manual was written, two NVIDIA
Tesla S1070s were installed. This amounts to a total of eight GPUs and 32 Gigabytes
of dedicated GPU memory attached to four DMC compute nodes. The website
http://www.asc.edu/supercomputing/hardware.shtml should be consulted for the
number of GPUs currently installed.

There are also eight Fermi M2070 cards. Each of these cards has 448 cores and 6 GB
of ECC memory. Each of these provides 1.03 TFLOP of single precision floating
point capacity and 0.515 TFLOP of double precision capacity.

�38

Figure 5.3

Four Kepler GPUs in a densely packed server.

 HPC User Manual - 11th Edition � Supercomputer Hardware

There are sixteen Kepler K20 cards. Each of these cards has 2496 cores and 5 GB of
ECC memory. Each of these provides 3.5 TFLOP of single precision floating point
capacity and 1.1 TFLOP of double precision capacity. There are four K20 GPUs
installed in each GPU node, as shown in Figure 5.3 .

Software development is supported by a NVIDIA compiler suite known as CUDA
that allows programmers to target NVIDIA GPUs using the standard C programming
language with GPU-specific extensions for thread and memory management.
NVIDIA also provides libraries that support a large number of functions from the
standard BLAS and FFTW programming libraries, and allow users to leverage GPUs
through minor code modification and linking against a different library. Further
details on using GPUs may be found in the directory /opt/asn/doc/gpu

A more recent development is the ability to use OpenACC to program GPU chips.
OpenACC is based on compiler directives before and after the loop to be parallelized,
very similar to OpenMP. OpenACC directives can be used in C and Fortran with a
compiler that supports OpenACC. An OpenACC extension to the Portland Group
compilers is available on the HPC systems.

File Systems and Infrastructure Servers

There is a GPFS storage array for storage of data. GPFS is an IBM product, although
the hardware it is running on is made by DataDirect Networks (DDN). This storage
system hosts home directories, applications, genome storage, and /scratch space. The
GPFS system connects to the nodes via Infiniband.

After the current file system was installed at ASC, IBM renamed GPFS as “IBM
Spectrum Scale”. This documentation continues to use the GPFS name for
consistency.

The infrastructure for the supercomputers also includes servers for passwords, group
memberships, software licenses, operating system updates, security monitoring, and
the queue system. Figure 5.1 shows a view of this infrastructure. The servers and
network gear shown in the bottom third of this diagram are common to both the UV
and the DMC.

�39

 HPC User Manual - 11th Edition � Available Software

6. Available Software
The Alabama Supercomputer Authority provides a selection of software to be used on
the high performance computing systems. Commercial software packages are
purchased based on the number of user requests, within budgetary constraints.

The software packages available on the HPC systems include both commercial and
open source programs. The Alabama Supercomputer Center staff, installs these
software packages, creates queue scripts to run them, and writes up README.md
files with instructions on how to use the software. The extension .md means that the
file is in markdown format. Markdown files are text file that can be read with any
text file viewer such as more or nano or can have the additional formatting
displayed using a markdown capable viewer such as the ascdocs command. The
documentation and instructions on how to access each software package can be found
on the system in the directory /opt/asn/doc or by typing ascdocs

Public domain software packages, such as those licensed under the GNU Public
License (GPL), are available to all users of the supercomputers. The majority of the
commercial software packages are purchased under licenses that allow academic
usage only. Commercial customers may be required to pay an additional license fee
to use the commercial software packages in order to cover the cost of obtaining the
necessary commercial license.

Users may install software that is licensed for the use of their research group only, or
any public domain software. These packages can be installed in the users home
directory, or the users can request that the Alabama Supercomputer Center staff install
the software for them by contacting the staff at hpc@asc.edu . The staff can install
software in a centralized directory, then put a permission group on that software so
that only authorized users can access it.

Software packages are added to or removed from the system from time to time. For a
complete listing of the programs currently available login via ssh, then type the
ascdocs command.

To request new software packages, or new versions of software contact the HPC staff
at hpc@asc.edu Commercial software is upgraded as updates come out. Public
domain software is updated by user request only.

�40

 HPC User Manual - 11th Edition � Accessing the Supercomputers

7. Accessing the Supercomputers

Access to the supercomputers is available via encrypted connections, such as ssh, scp
and sftp. Connections via telnet and ftp are not allowed. The ssh program allows the
user to open a text console session on a remote computer. Thus ssh is essentially an
encrypted version of telnet. The scp and sftp commands are for transferring files
between computers. The sftp program works like an encrypted form of ftp.

When a user connects to a computer at ASC, the user must enter their user_id and the
appropriate password. This is done from a shell or terminal prompt on a Linux or
Unix system or Macintosh, from a Unix shell on a PC (using a Unix-in-windows tool,
such as Cygwin or MKS), or using a graphical ssh program under windows, such as
PuTTY.

WARNING: You may optionally add additional ssh keys to your account, but DO
NOT remove the ssh keys provided with the account as this will cause your
account to stop receiving output files from the queue system.

NOTE: You must be able to login with ssh before you can use scp or sftp. Any error
messages generated on login with ssh will prevent scp and sftp from working
correctly.

ssh connections from OS X, Linux, or Cygwin
Connections to the supercomputers via ssh can be made from a terminal window.
On a Macintosh computer, the Terminal.app program is in Applications/Utilities.
Some Linux distributions have a terminal icon on the menu bar, and others have a
menu pick to open it, such as Applications->Accessories->Terminal in Ubuntu. A
Windows computer with Cygwin installed will have a Cygwin icon on the desktop.

Once the terminal window is open, the commands syntax is usually the same on all
systems. Typical variations on the ssh command line syntax are:

ssh <user_id>@hostname
ssh –l <user_id> hostname

where hostname is the name of the login node (uv.asc.edu or dmc.asc.edu) and
<user_id> is replaced by your account name.

�41

!

 HPC User Manual - 11th Edition � Accessing the Supercomputers

Examples:

local>ssh asndcy@uv.asc.edu
local>ssh –l asndcy dmc.asc.edu

These command should bring up another line asking you to type in your password.
Enter your password, and press Return. Note that nothing is shown on the screen
when you type the password, not even asterisks (which show an onlooker how many
characters are in your password). If you get a message about password database
being too restrictive, it means that you mis-typed the password. The password must
be typed exactly as sent to you including the use of upper and lower case characters.

Once the correct password has been entered, a message will be displayed with any
current announcements. You are now logged in on the supercomputer, and can use
any of the Linux, module, or queue system commands described in this manual.

To logoff the supercomputers, type “exit” and press return.

ssh connections from PuTTY
Windows does not come with a ssh program, but several free ssh programs are
available. The easiest to use, free ssh program is PuTTY. The Cygwin program
described later in this chapter is a more powerful system that installs a Linux
environment on a Windows system. Cygwin is over kill for a simple ssh connection,
but a powerful tool providing a Linux environment on a Windows computer and for
running graphical programs on the supercomputers.

The free PuTTY program can be downloaded from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html . This is a
simple, free ssh program for Microsoft Windows. It can be used in conjunction with
some X-window clients, such as X-Win32.

The file to download from the website is named putty.exe . Usage of psftp.exe and
pscp.exe from the same website is discussed later in this chapter.

Unlike most software packages, putty.exe is not a package with an installation
program. It is a single, executable file that needs to be run to use PuTTY. The
putty.exe can be saved directly to the desktop. Another option is to save putty.exe to
a directory of your choice, then create a desktop shortcut to it.

�42

EXAMPLE

 HPC User Manual - 11th Edition � Accessing the Supercomputers

To connect to the supercomputers with PuTTY, first double click on the PuTTY icon
on the Windows desktop. Windows may pop up a security warning message that
requires you to click on “Allow”, or “Run”, or “Continue” in order to allow the
PuTTY software to run. This will open the PuTTY Configuration window, shown in
Figure 7.1 .

Enter the host name, either dmc.asc.edu or uv.asc.edu in the “Host Name (or IP
Address)” box. The rest of the settings should be correct with the defaults. These are
Port 22, SSH, and keyboard-interactive under Connection->SSH->Auth.

When using commands involving a host name, such as ssh or scp, users should
always specify the full name, e.g. dmc.asc.edu

Clicking on the “Open” button should cause the initial window to be replaced by the
PuTTY terminal window shown in Figure 7.2

�43

Figure 7.1

The PuTTY
configuration
window.

Reminder

 HPC User Manual - 11th Edition � Accessing the Supercomputers

The PuTTY terminal window will appear with the “login as:” prompt. Enter your
supercomputer account name, and press Return.

Next, the “Password:” prompt will appear. Enter your password, and press Return.
Note that nothing is shown on the screen when you type the password, not even
asterisks (which show an onlooker how many characters are in your password). If
you get a message about password database being too restrictive, it means that you
mis-typed the password. The password must be typed exactly as sent to you
including the use of upper and lower case characters.

Once the correct password has been entered, a message will be displayed with any
current announcements. You are now logged in on the supercomputer, and can use
any of the Linux, module, or queue system commands described in this manual.

To logoff the supercomputers, type “exit” and press return.

Transferring Files with sftp
Files can be transferred between systems on the network using the “sftp” command.
The sftp program is very similar to ftp, except that sftp uses a secure, encrypted
connection.

�44

Figure 7.2

The PuTTY
terminal
window.

 HPC User Manual - 11th Edition � Accessing the Supercomputers

Files are usually transferred as ASCII files. Binary files can also be transferred. Use
of sftp requires a valid userid and password on the remote system. The commands
covered in this section are:

 sftp Establish a remote connection.

 get Move a file from the remote host to the local host.

 put Move a file from the local host to a remote host.

 mkdir Create a new directory on a remote host.

 cd Change directories on a remote host.

 ls List files in the current remote directory.

 lcd Change directories on the local host.

 lpwd Display the current directory path on the local host.

 quit Exit from ftp.

For additional information about the sftp command, enter “man sftp”.

In Linux, OS X, or Cygwin; Open a terminal as described in the ssh directions
earlier in this chapter. To establish a connection to a remote system, use the sftp
command with the username and network address. After the connection is
established, provide a valid password, as shown in the following example;

 sftp asndcy@uv.asc.edu
 Connecting to uv.asc.edu...
 asndcy@uv.asc.edu's password:
 sftp>

Using psftp.exe: Download psftp.exe from the PuTTY website the same way that
putty.exe was downloaded. Double click on the psftp icon on the Windows desktop.
A Windows security message may appear requiring you to click “Run”, “Continue” or
“Allow” to allow psftp.exe to run. Initiate the connection to the supercomputer with
the command “open dmc.asc.edu” or “open uv.asc.edu”. Type in your
user name and press Return, then type in your password and press Return.

�45

 HPC User Manual - 11th Edition � Accessing the Supercomputers

The sftp> prompt indicates that anything you type now should be sftp commands.
This helps minimize confusion as some sftp command, such as cd and mkdir, are very
similar to commands available from the regular login shell.

Using psftp.exe: The rest of the directions on using sftp work the same in psftp.exe
with one exception. psftp does not always function correctly when directory names
contain spaces. Thus you may not be able to transfer files in or out of the
“My Documents” directory. The work around for this is to make a top level directory,
such as C:\downloads and transfer all files in and out of that directory.

The get Command

The get command is used to transfer a file from the remote system to the local
system. The syntax is:

 get <remotefilename> <localfilename>

If the local file name is omitted, the remote file name will be used for both files.
Below is how this should look.

 sftp> get hello.f
 Fetching /home/asndcy/hello/hello.f to hello.f
 /home/asndcy/hello/hello.f 100% 65 0.1KB/s 00:00
 sftp>

The put Command

The “put” command is used to send a file from the local host to the remote host. The
syntax is:

 put <localfilename> <remotefilename>

If the remote file name is omitted, the local file name will be used for both files.
Below is an example of how this should look.

 sftp> put test1.inp test_input.inp
 Uploading test1.inp to /home/asndcy/test_input.inp
 test1.inp 100% 5 0.0KB/s 00:00
 sftp>

�46

 HPC User Manual - 11th Edition � Accessing the Supercomputers

The mkdir Command

The “mkdir” command is used to create a new subdirectory on the remote host. The
syntax is:

 mkdir <new-sub-dir>

The following is an example of how this should look.

 sftp> mkdir demosftp
 sftp>

The cd Command

The “cd” command is used to change directories on the remote host. The syntax is:

 cd <dir-name>

The following is an example of how this should look.

 sftp> cd demosftp
 sftp>

The ls Command

The “ls” command is used to get a listing of the files in the current remote directory.
The syntax is the same as the Linux ls command syntax. For example;

sftp> ls
a.out demosftp hello.f test.inp
sftp> ls -l
-rwxr-xr-x 1 asndcy analyst 800106 May 19 11:58 a.out
drwxr-xr-x 2 asndcy analyst 6 May 20 11:49 demosftp
-rw-r--r-- 1 asndcy analyst 65 May 18 13:49 hello.f
-rw-r--r-- 1 asndcy analyst 5 May 20 11:48 test.inp
sftp>

The lcd Command

The “lcd” command is used to change directories on the local host. The syntax is;

 lcd <dir-name>

�47

 HPC User Manual - 11th Edition � Accessing the Supercomputers

The lpwd Command

The “lpwd” command shows the full path to the current directory on the local host.
No argument is required.

The quit Command

The quit command exits from the ftp session. The quit command does not require
any arguments. After typing quit, the session should return to the command prompt,
as shown in the following example.

 sftp> quit
 asndcy01@delldhp2 /scratch-local>

Transferring Files with scp
The following describes how the “scp” command works on Linux, OS X, and
Cygwin. There is a pscp.exe program on the same website as PuTTY. pscp.exe
works similarly, but does not work on all versions of Windows.

The commands scp and sftp can be used to copy files from your desktop computer to
the supercomputers, or from the supercomputers to you desktop. Full documentation
for these commands can be viewed on the supercomputers by typing “man scp” or
“man sftp”.

The scp command works like the cp command, but requires that a username and
computer network address be specified also. For example, if you are on your
computer, in a Cygwin shell, in a directory containing myfile.txt and you want to
copy it to the supercomputers, the following command would be used.

 scp myfile.txt <login_id>@dmc.asc.edu:~

The <login_id> would be replaced by your user name. The tilde “~” designates that
the file should be put in your home directory.

The scp command to copy the file back from the supercomputer to the directory you
are currently in within a Cygwin shell would look like this

 scp <login_id>@dmc.asc.edu:~/myfile.txt .

In this case the single period at the end indicates that the file is copied to the directory
your are currently in.

�48

 HPC User Manual - 11th Edition � Accessing the Supercomputers

Savvy users who move large amounts of data around tend to use scp because it
requires less typing than sftp, or rsync for its advanced features.

X-Windows
Some software packages at ASC have graphical interfaces, which require the use of
an X-Windows server program. X-Windows is the graphical user environment used
on UNIX and Linux computers. Unlike Microsoft Windows, X-Windows was
designed from its inception to display graphical interfaces on a computer that is
geographically removed from the one actually running the program. X-Windows
software is usually included with Linux or Unix operating systems. There is an X-
Windows server for Macintosh OS X systems called X11, which is included on the
operating system installation DVD but not installed by default. For Microsoft
Windows users, it will be necessary to install an X-Windows server.

If you wish to use a program that utilizes an X-Windows interface and run it from a
PC, first contact your campus information technology office. Some campuses have
X-Windows servers available at a reduced cost or no cost. There are several good
commercial X-Windows clients, such as X-Win32 or Exceed. The free MobaXterm,
Xming, and Cygwin packages also include X-Windows servers.

Cygwin, MobaXterm or Xming work with some Windows versions and not others.
Check their websites for information about using the latest version on your version of
Windows. MobaXterm is the easiest to install, although it has a couple quirks to
work around. The Xming X-Windows client is easier to install than Cygwin.

Installing and running MobaXterm
There are both free (also called home) and professional versions of MobaXterm. The
directions below are based on using the free version. MobaXterm can be used for
ssh, sftp, and X-Windows, although it is overkill if you don’t need the X-Windows
functionality.

Installation

Download the MobaXterm zip file from the website
http://mobaxterm.mobatek.net/ We recommend using the free version.

Double click on the file name in Windows Explorer in order to unzip it.

�49

 Tip!

 HPC User Manual - 11th Edition � Accessing the Supercomputers

In Windows Explorer, drag the program file to the desktop. It might have a name like
MobaXterm_Personal_5.0

NOTE: The file you need is NOT the file with "Customizer" in the name. The
long file names might be obscured as too long to be icon names.

Using SSH in MobaXterm

Double click on the "MobaXterm" icon on the desktop to start it.

Within MobaXterm, click on the "Session" icon. If it is the first time you have used
MobaXterm, it might immediately give you a dialog box asking what type of session
to open. Otherwise, click on "New Session". The dialog box for opening an ssh
session is shown in Figure 7.3

In the Session dialog, click on "SSH"

NOTE: At the time this was written, MobaXterm may have issues talking to DNS
on some computers, even if DNS names work from other applications on the same
computer.

�50

!

!

Figure 7.3 Starting an SSH session in MobaXterm.

!

 HPC User Manual - 11th Edition � Accessing the Supercomputers

In the "Remote hostname" box type dmc.asc.edu or uv.asc.edu and press the “Return”
key. If you run into issues resolving DNS names on your computer, try substituting
129.66.9.52 for the DMC or 129.66.9.20 for the UV.

Type in your account name at the "Login:" prompt and your password at the
"Password:" prompt.

NOTE: After your connect via SSH for the first time, your session will be saved in
the "Saved Sessions" area on the left. You can open a new session by double clicking
on these entries. You can right click on the session name to rename it.

Using X-Windows with MobaXterm

X-Window tunneling through ssh is turned on by default, as is the X-Window server
and OpenGL support.

After logging in via ssh, type "xclock". This should display a small window with a
dial clock. It may be displayed behind the MobaXterm window. Also, an icon for the
XClock session should appear in the taskbar at the bottom of the screen.

If xclock displays properly, then X-Windows is working correctly.

Close the clock window.

You can now run X-Window programs through this ssh session.

Using SFTP in MobaXterm

MobaXterm can act as a sftp client to transfer files between your local computer and
the supercomputers. However, the sftp graphical interface was broken at the time this
was written, so sftp needs to be run from the command line, as shown in Figure 7.4

WARNING: SFTP cannot be run by starting from the "Session" icon. It must be
started from the command line, with a command like this.

 sftp myaccount@dmc.asc.edu

Type this in the left most tab (shell window), which is logged in on the local machine.
Enter your password when prompted. If you run into issues resolving DNS names on
your computer, try substituting 129.66.9.52 for dmc.asc.edu.

From here, follow the directions for using sftp that are found in this manual.

�51

!

 HPC User Manual - 11th Edition � Accessing the Supercomputers

scp commands can also be run from the shell window.

Getting help in MobaXterm

The Help->Documentation menu pick in MobaXterm opens a web page with the
MobaXterm manual in it.

At the command prompt, you can use a command like this

 man command_name

Installing and running Xming
The Xming software can be downloaded from

 http://www.straightrunning.com/XmingNotes/ 

�52

Figure 7.4 Starting an sftp session in MobaXterm.

http://www.straightrunning.com/XmingNotes/

 HPC User Manual - 11th Edition � Accessing the Supercomputers

Here are extra notes about doing the Xming installation.

• On the web page, scroll down to the "Releases" section and to the second table
under the column heading saying "Public Domain Releases". Click on the link that
just says "Xming". This should take you to a Sourceforge web page and open a
download window. If the download window doesn't open, it may be necessary to
set an exception to the pop up blocker in your web browser.

• The downloaded file can be run (i.e. from Windows Explorer) to install the
software. During the installation, several security windows may require you to
indicate that the installation should be allowed and unblocked.

• The default Xming installation settings should work.

• To start Xming, select Start->All Programs->Xming->Xlaunch Use the default
Xlaunch options with the exception of; Start a program, Using PuTTY, and fill in
the machine name (i.e. dmc.asc.edu) your userid and password. This should open
an xterm window with you logged in on the DMC.

• Once you are logged in try typing “xclock”. If a window with a clock is displayed
on the screen, Xming is working correctly.

Cygwin Installation
Cygwin is a more complex and powerful environment than Xming. Xming simply
installs a X-Window server and ssh program. Cygwin sets up a complete Linux
environment on a Windows computer. This allows you to run scripts, compile
software, and run a large number of Linux applications on a Windows computer.
Cygwin is a favorite of people who have a Windows computer, but would like to run
Linux applications, develop software, or utilize the powerful scripting features of
Linux. The following discussion of Cygwin installation and use is provided for the
benefit of users that would like to use Cygwin for ssh, as an X-Window server and
other functions.

You may obtain the Cygwin setup.exe file from http://www.cygwin.com/ .
Download the setup.exe file, then execute it. The images shown in Figure 7.5 show
recommended settings in the Cygwin installation. There may be additional steps to
verify that it is valid software, allow it to run and unblock it’s access to the internet.

Note that the mirror site name shown here is at Virginia Tech (vt.edu). This address
must be selected as shown in Figure 7.6.

�53

 HPC User Manual - 11th Edition � Accessing the Supercomputers

�54

Figure 7.5

Recommended Cygwin
installation options are;

Install from Internet
Default directory
Unix text file type
Direct Connection

 HPC User Manual - 11th Edition � Accessing the Supercomputers

WARNING: Cygwin will not install the X-Windows components by default. In
order to get a Cygwin installation capable of running X-Windows software, you
must follow these directions closely.

The default installation is a minimal installation. Additional tools to install can be
added by clicking the packages (as shown in Figure 7.5). Additional tools can be
added later by running the setup program again. Browsing this setup menu is a good
way to find out about the available options in Cygwin. Additional packages can be
added by clicking on the word to the right of the little circling-arrows icon.

Adding the following packages to the default selections is recommended, as shown in
Figure 7.7.

X11 -> Install All (the X Window server)

under Editors
Nano -> Install (an easy to use text editor)
Vim -> Install (the vi text editor for power users)

under Mail
Exim -> Install (send email from the command line)

under Net
Openssh -> Install (for SSH and X Window client)

�55

Figure 7.6

The vt.edu mirror site
usually gives good
download speeds to
locations in Alabama.

!

 HPC User Manual - 11th Edition � Accessing the Supercomputers

under Shell
Rxvt -> Install (alternative to the dos prompt)

Other items that some users may wish to install include; emacs (under Editors), math
tools, programming utilities such as make and the gcc C/C++ compiler (under Devel),
and TeX (under Publishing).

Follow the installer prompts to finish the installation with default options.

Additional packages can be added into an existing Cygwin installation later by
rerunning the installation program.

Create a shortcut to the X-Windows program by clicking the right mouse button on
the desktop background. From the menu that appears, select New then select
Shortcut from the submenu. If you used the default installation paths, the target will
be C:\cygwin\bin\startxwin.bat . On Windows Vista systems, the desktop icons
may not show up until the next time the computer is restarted.

�56

Figure 7.7

The following optional
components must be
selected in order to get a
Cygwin installation
capable of running X-
Windows and performing
other tasks discussed in
the supercomputer
documentation.

X11
Nano
Vim
Exim
Openssh
Rxvt

 HPC User Manual - 11th Edition � Accessing the Supercomputers

Using Cygwin X-Windows with SSH
Start an X-Windows terminal on your PC by double clicking on the startxwin icon
on your desktop. Alternatively, it can be started using
Start->All Programs->Cygwin-X->XWin Server It may be necessary to use either
of these start options several times in order to get the software to start on a Windows
Vista system. The Start menu option is used for newer versions of Cygwin on
Windows 7.

Open a secure connection to your supercomputer account with a command like this

 ssh –Y –l <user_id> uv.asc.edu

At this point, you should be able to run X-Windows commands and have them
display on your local computer screen. You can test this by typing xclock . This
should display a clock in a small window on your PC screen.

If this X-Windows client setup does not work, the most common problem is
limitations imposed by network firewalls. Tunneling X-Window connections through
ssh avoids these problems, as long as ssh access is available.

�57

 HPC User Manual - 11th Edition � Accessing the Supercomputers

Using the screen terminal multiplexer
This section describes the use of a terminal multiplexer. Advanced users can find
this to be a valuable productivity tool. Beginning users can safely skip this
section.

Consider the following scenarios:

• You have an ssh session exactly the way you want it with modules loaded,
commands you are using a couple steps back in your history, and in the
desired directory. It can be aggravating when the ssh connection is lost due to
a network interruption.

• You want to leave an ssh session open for long periods of time so you can
check on work in progress. However, the connection gets broken when the
laptop is closed.

• You would like a handy key sequence to jump between multiple ssh sessions.

All of these are problems that can be solved with a terminal multiplexer. This section
will describe the “screen” command which is included with many Linux
distributions and on OS X. There are other, more sophisticated, terminal multiplexers
such as tmux that have similar functionality and more, such as split screen
capabilities. The older version of screen included with many Linux distributions does
not have split screen capability, but newer versions do.

Here is an example of using screen.

Login via ssh.

Create a screen session named project1 with the command

 screen -S project1

Change directories “cd /opt/asn/doc”, and type “ls”

Create a second shell in this session by pressing “CTRL-A” then “C”

In this second session, change to a different directory, and type “ls”

Switch between the two shells by pressing “CTRL-A” then “N” for next.

Exit the screen session by pressing “CTRL-A” then “D” for detach. Your shells are
still running. You just aren’t attached to them.

�58

 Tip!

 HPC User Manual - 11th Edition � Accessing the Supercomputers

Type “exit” to log out of the system, then log back in via ssh. You must log back in
to the same system. Screen sessions started on dmc.asc.edu will not be visible on
uv.asc.edu . Screen sessions are lost if the supercomputer system is rebooted, such
during a maintenance shutdown.

Find out what screen sessions you have already in process with the command

 screen -ls

One of them should be your session with a number assigned, perhaps like this
19520.project1 . Resume this screen session by typing

 screen -r 19520.project1

Again, you should be able to jump between your two shells.

Screen saves environment, history, and directory. You can even leave a screen session
in the middle of editing a file. However, it does not save a scroll back of information
previously displayed (which is handled by the local computer).

If you lose your network connection, the screen session is still there. Sometimes it
can take a while to see that you are no longer connected to it.

There are additional options for screen, such as attaching to a session that is in use
from another computer. The documentation can be seen with the command

 man screen

�59

 HPC User Manual - 11th Edition � Working with Linux

8. Working with Linux
The Linux operating system is a public domain operating system, which mostly
conforms to the POSIX standard (the technical specification for the UNIX operating
system). It was developed by large number of volunteer programmers around the
world. The original inception and much of the project coordination is attributed to
Linus Torvalds, then a student at the University of Helsinki, Finland. Both the DMC
and the UV are running versions of Linux. The Linux version on the UV comes with
additional tools developed by SGI. The operating system on these machines is very
much like Linux operating systems on a wide variety of other computers.

Most of the differences between the operating systems on the SGI Ultraviolet and
DMC are items that concern the system administrators, but are not directly visible to
the users of these systems. The one exception to this is that users compiling their
own MPI parallelized programs will have to follow slightly different procedures in
order to use the version of MPI applicable to each system.

Linux provides the standard UNIX commands, libraries, and features, such as user
shells, pipes, tees, and filters. Also included are text editors (nano and vi),
communications programs (ssh, sftp, and X-Windows), and compilers (C, C++, and
Fortran90). The job queuing system (SLURM) is a third party add-on to Linux
systems. SLURM allows users to create a file of commands for the computer to
execute at a later time rather than simply typing in the commands one by one from a
terminal. Effective use of the computers, particularly for large jobs, requires use of
the SLURM queue system.

Many popular Linux guides and textbooks also provide valuable information and are
generally applicable to Linux. Most documentation for Linux can be accessed online
via the man command. See the “Online Help” and “Technical Support for Users”
sections of this manual for information about getting help.

Using Linux interactively is described in the following pages. The SLURM queue
system is designed to accept the same commands as for interactive use. You can
prepare a file for submittal to the SLURM system with one of the text editors and
then place it into an appropriate batch queue.

�60

 HPC User Manual - 11th Edition � Working with Linux

Files and Directories
The same rules apply to both file and directory names in Linux.

WARNING: Linux is case sensitive! Uppercase is distinguished from lowercase.
For example, prog.c is not the same file as Prog.c .

Directory and file names may be from 1 to 254 characters long. Periods and
underlines may be used to substitute for blanks (which are strongly discouraged) to
clarify what the names mean. For example, a documentation file might be designated
read.me or read_me . Nearly any keyboard character may be used in file and
directory names.

When naming files and directories, it is best to avoid the characters that Linux uses
in other situations, such as / \ " ' * ; - ? [] () ~ ! $ { } < > tab and the space
character, which all can potentially create confusion. Period and underscore are
safe to use in file and directory names.

Directories in a Linux system are organized in a tree structure. The root directory is
the top of the directory tree. The root directory is designated / Users on the system
have their directories and files placed in a branch of the root corresponding to their
account. Other important directories, such as apps (where applications are stored) opt
(where additional information is stored) and bin (where built in programs reside), also
branch directly from the root directory. These directories are designated /home,
/apps, /opt, and /bin.

Subdirectories are indicated with a / preceded by the name of their parent directory.
If there is a user subdirectory called asndbg in home, for example, the full designation
for that subdirectory, starting from the root, would be /home/asndbg . The user
asndbg might have organized Fortran programs into a subdirectory called fort, and
one of those programs might reside in the file prog.f within the fort subdirectory. The
full path designation for the file prog.f thus would be:

 /home/asndbg/fort/prog.f

Figure 8.1 shows a sample directory tree. This example includes the directory
described above, the mail directory also belonging to user asndbg and the home
directory of user asndcy.

�61

!

 Tip!

 HPC User Manual - 11th Edition � Working with Linux

Any given directory has a parent directory, in which it is a subdirectory. Shorthand for
the parent directory is "..". To get to the directory mail from directory fort in Figure
8.1, one uses the change directory command “cd” in Linux. The cd command is used
to move up one directory, then down (indicated by the slash) into a different directory
like this

 cd ../mail

The shorthand designation, "." represents the current directory. The shorthand
designation, "~" represents the users home directory.

The asterisk “*” is a wild card character which indicates any number of characters at
that point. For example, to copy all files with extension .f from the parent directory
to the current directory, use the following command:

 cp ../*.f .

ASC Linux File Organization
The Linux filesystem is best described with the Linux Filesystem Hierarchy. This
standard can also be found on the web at
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/

In addition to the standard file system ASN uses the directory structure shown in
Figure 8.2 for locally installed software and user accounts.

�62

Figure 8.1

A graphical depiction of a directory tree.

/ home asndbg fort

mail

asndcy

 HPC User Manual - 11th Edition � Working with Linux

The following are some of the directories on the HPC systems at the Alabama
Supercomputer Center, which are of importance to users of the system.

/home – Used for storing users’ files

/opt/asn – All software we install goes here, as well as other material available to
users

/opt/asn/doc – Documentation and directions for running many third party software
packages.

/apps/bio/unzipped - Genomic databases

/opt/asn/etc/asn-bash-profiles – Files sourced from the users .bashrc file

/scratch – A large shared temporary file system for storing calculation data. Files on
this file system are automatically deleted if they have not been accessed in 7 days.
Users may create and delete files here. There are currently 45 TB of scratch, with a
limit of no more than 30 TB being used by any one user.

There are some hidden files in each users home directory. These files are put there
before the user ever logs in. Commands can be put in the account setup files to

�63

Figure
8.2 /

/opt

/home /username1

/username2

/scratch

/doc

/asn /apps

/etc /asn-bash-profiles

/asn-bash-profiles-special
/bin

/include

/lib

/man

 HPC User Manual - 11th Edition � Working with Linux

customize the behavior of the account, or to configure the account to use certain
software programs.

Files are hidden files if the file name begins with a period. However, the “ls”
command that displays a list of files can be told to include the hidden files by using a
-a flag like this.

 ls -a

If the user account is brand new and has no files, typing “ls -a” would still result in
showing the following;

 . .bashrc .ldaprc
 .. .bashrc.local
 .alias .bashrc.local.dmc
 .asc_queue .bashrc.local.uv
 .bash_history .flexlmrc

The . (period) entry is a pointer to the current directory. The .. (period period) entry is
a pointer to the directory above the current directory. Here are notes on a number of
these files.

The .alias file can contain aliases, which create shortcut versions of commands. An
alias can also be used to create a new default behavior of a command, or tell your
account to use an alternative version of the same command. Here is an example of an
alias entry to change the default behavior of a command.

 alias file=“file_info"

The .asc_queue file can be altered to change the default behavior of the commands
used to submit jobs to the queue system. It has an explanation of each setting in
comments.

The .bashrc file is the primary point of user account customization on most Linux
systems. The Alabama Supercomputer Center has a site specific account
configuration. Thus the .bashrc file should never be altered.

The .bashrc.local file can be altered to install customizations that will be seen on both
of the high performance computers at the Alabama Supercomputer Center.
The .bashrc.local.uv and .bashrc.local.dmc files can be edited to customize the
behavior on just one of the high performance computing systems at the Alabama
Supercomputer Center.

�64

 HPC User Manual - 11th Edition � Working with Linux

The files .flexlmrc and .ldaprc configure your account to use certain software
packages. These files should never be altered.

WARNING: The .bashrc .flexlmrc and .ldaprc files should never be altered on the
supercomputers.

Manipulating Files and Directories
The following are some of the Linux commands that are most often used to create,
move, copy, or delete files and directories. Each command must be in lower case as
shown. The examples shown here are the simplest, most frequently used command
line options. Most of these commands have additional command line options, which
can be displayed on line with the command “man <command>”.

cd
Typing “cd” without arguments puts the user in the user's home directory. With a
directory name as an argument, the command moves the user to that directory. If the
directory name starts with a slash, it is a full path name from the root directory. For
example

 cd /opt/asn/doc

If the directory name does not start with a slash, it implies a subdirectory of the
current location. For example

 cd gaussian

To go up one directory, use two periods like this

 cd ..

�65

!

 HPC User Manual - 11th Edition � Working with Linux

cp
The “cp” command makes copies of files in two ways. This example makes a copy
of filea and names it fileb.

 cp filea fileb

The following example puts copies of all the files named into the directory.

 cp [list of files] <directory>

The cp command can be given an asterisk “*” as a wild card character to move
multiple files. For example, the following command would copy every file with a
name ending in .c to the directory named source.

 cp *.c source

The cp command makes a second copy of the file, unlike the mv command which
leaves only one copy of the file but moves it to a new location.

file
The “file” command examines the contents of a file to see what type of file it is.
This is called with the file name as the only argument like this.

 file <filename>

If the program is compiled to run on the DMC, the file command will show that is is
an x86-64 architecture executable like this.

asndcy@dmc:x86_64> file environ
environ: ELF 64-bit LSB executable, x86-64, version 1
(SYSV), for GNU/Linux 2.4.0, statically linked, not
stripped

file_info
The “file_info” command is used the same as “file”. file_info shows all of the
information that file does, plus identifies the presence of SSE and AVX instructions in
an executable. However, file_info takes much longer to run that the file command.

�66

 HPC User Manual - 11th Edition � Working with Linux

ln
The “ln” command creates a symbolic link when the -s flag is included. A
symbolic link is a pointer so that a file or directory will appear to be in a second
location. In Windows, symbolic links are called shortcuts. Symbolic links can be
used to make frequently used directories or files conveniently accessible. For
example, the following command makes a symbolic link so that the documentation
directory appears to be a subdirectory of your home directory

 ln -s /opt/asn/doc $HOME

After typing the above command, you can type “cd doc” from your home directory
and you will see all of the documentation directories.

ls
The “ls” command lists the files in the current directory or the directory named as an
argument. The ls command can be used without arguments, but there are many
options available. For example;

 ls -a [directory]

lists all files, including files whose names start with a period. If a directory name is
not specified, ls lists files in the current directory. Files that have names starting with
a period are hidden unless the -a option is given. These are account setup files which
should be altered seldom if ever.

 ls -l [directory]

lists files in long form: links, owner, size, date and time of last change.

 ls -C [directory]

lists files in columns using full screen width.

 ls -R [directory]

recursively lists files in current directory and all subdirectories.

�67

 HPC User Manual - 11th Edition � Working with Linux

mkdir
mkdir makes a new subdirectory in the current directory. For example;

 mkdir fort

makes a subdirectory called fort.

more (or less)
The “more” command is used to display a text file. For example, filea.txt can be
displayed with the command

 more filea.txt

Within more, the next page of text can be viewed by pressing the space bar. The next
line of text can be viewed by pressing the Return key. You can also use the “f” key
to move forward and “b” key to move backwards by a page. Typing “q” exits more.
Some Linux systems have a “less” command that is an enhanced version of
“more”, but the differences are relatively minor.

mv
The “mv” command moves or changes the name of a file. The following example;

 mv filea fileb

changes the name of filea to fileb. If the second argument is a directory, the file is
moved to that directory but keeps the same name.

When the mv command is used, there is only one copy of the file, in contrast to using
the cp command which makes a second copy of the file.

pwd
The “pwd” command returns the name of the current working directory. It tells
where the current directory is in the directory tree. No arguments required.

rm
The “rm” command removes each file in a list from a directory. For example, the file
program.cc can be deleted with the command.

 rm program.cc

�68

 HPC User Manual - 11th Edition � Working with Linux

All of the files ending in .cc can be deleted with the command

 rm *.cc

WARNING: Using the asterisk with the rm command can result it deleting much
more than desired. Before using rm with an asterisk, it is advisable to check a
listing of which files will be deleted with the ls command like this “ls *.cc”.

Option -i causes rm to inquire whether each file should be removed or not, like this;

 rm -i *.cc

Option -r causes rm to delete a directory along with any files or directories in it. For
example;

 rm -r source

rmdir
The “rmdir” command removes an empty directory from the current directory. For
example;

 rmdir fort

removes the subdirectory named fort (if it contains no files).

To remove a directory and all files in that directory, either remove the files first and
then remove the directory or use the “rm -r” command described above.

tar
The “tar” command was created to store many files in one place, and thus tar stands
for “Tape ARchive”. Although the ASC HPC systems do not use data storage tapes,
this command is incredibly useful for packaging many small files into one larger file.

It is also common to use the -z flag to gzip compress the files to take less disk space
at the same time. Although it is not a requirement, files created by the tar command
are often given the extension .tar if not compressed or .tar.gz or .tgz if gzip
compressed as well.

The -x flag specifies extracting files from a file.

The -v flag activates a verbose mode so that the command will tell you what it is
doing.

�69

!

 HPC User Manual - 11th Edition � Working with Linux

The -f flag indicates that the next argument will be a file name for the tar file.

If you downloaded the source code for a piece of software off the the internet, it is
often in a tar file. People in the business refer to tar files of source code as tar balls.
You would extract the files from this file with a command like this

 tar -xzvf filename.tgz

If you have the files associated with a research project in a directory named
myproject_directory and would like to pack them into a single file so they can be
moved back to campus for permanent storage, the command would be

 tar -czvf myproject.tgz myproject_directory
 gunzip -t myproject.tgz

Warning: There is one issue with the tar command. If something like a disk
quota or CPU time limit kills the process that creates a tar file, there may be no
error message to tell you there is a problem. The gunzip command above verifies
that the file is good (no output) or gives an error message. If tar fails because of
CPU time limits on the login node, run it through the queue. This is usually
necessary for more than a few gigabytes of data.

Frequently Used Linux Commands
The previous section of this manual listed commands that are used for manipulating
files and directories. This section lists a number of other Linux commands. This is
by no means a comprehensive listing. There are thousands of Linux commands,
many of which are only used by system administrators, and a few of them a career
systems administrator will have never had occasion to use. However, the commands
listed here are the small set of commands that a user of a Linux system will utilize
99% of the time.

As in the previous section of this manual, the examples shown here are the simplest,
most frequently used command line options. Most of these commands have
additional command line options, which can be displayed on line with the command
“man <command>”.

�70

!

 HPC User Manual - 11th Edition � Working with Linux

apt-get
apt-get is a command for installing software on computers running a Debian variant
of Linux such as Ubuntu. The supercomputers use SUSE Linux, which does not use
apt-get. If you think you need apt-get, try reading the documentation on the software
package, provided through the “ascdocs” command, or contact the HPC technical
staff at hpc@asc.edu

awk
The “awk” command can be used to run an entire script written in the awk language,
or used as a command that runs one line of awk line functionality from the command
prompt or in a shell script. Most often, awk is used to insert a single line of awk
script code in a shell script. This is done because Bourne shell or bash shell scripts
are easier to write, but lack awk’s facility for floating point mathematics and
formatting columns of data. This is very powerful tool for writing Linux scripts, but
too complex to use to be covered in this manual. Users intending to use Linux scripts
heavily should look up the awk command in a book on shell programming. Several
good books on shell programming are referenced in the bibliography at the end of this
manual.

cat
The “cat” command concatenates (combines) and prints the files given as
arguments. The output goes to the standard output, which is usually the screen. For
example, the following command would print the contents of filea.txt to the screen.

 cat filea.txt

Note that printing a text file to the screen is a sensible thing to do. There is seldom
any reason to print the contents of a binary file, such as an executable program.
Indeed printing binary files to the screen often resets terminal settings, thus making it
necessary to close your session and reconnect to the supercomputer.

If no file is given, input is taken from the keyboard. A CTRL-D terminates keyboard
input and brings you back to the command prompt.

Often output is redirected with the operator >. For example;

 cat filea fileb > filec

concatenates filea and fileb and places the result in filec.

�71

 HPC User Manual - 11th Edition � Working with Linux

chmod
The “chmod” command changes the file permission status of a file. Permissions may
be granted to read, write, or execute the file. That permission may be given to the
user, the user's group, or to the world. When one uses the “ls -l” command, these
permissions are listed at the left as a series of r's, w's, or x's, with - indicating that
permission is not granted.

For example, -rwxrwxrwx indicates read, write, and execute permission is granted to
all three groups; -rw-r----- grants the owner of the file read and write permissions, the
members of the owners group read permission, and no access to users not in the
owners group. The chmod command changes the status of these permissions. The
form is the following:

 chmod [ugo] [+-] [rwx] files

The flags u, g, or o stand for user, group, or others. The + or - indicate whether the
permission is to be given or denied. The r, w or x indicate whether read, write, or
execute permission is to be given. For example;

 chmod +x myfile

will give myfile execute permissions for everyone. Or the command;

 chmod ug+x filea

will give filea execute permission to the user and the user's group.

When a new file or directory is created, the default permissions granted are those
specified by the user's umask (or default permission mask). The operating system has
a default umask, which is set on all user accounts. The user can change the umask
value to suit the user's needs. See the man page on umask for details by typing
“man umask”.

date
The “date” command outputs the date and time. The date command does not
require any arguments.

�72

 HPC User Manual - 11th Edition � Working with Linux

echo
The “echo” command repeats whatever text is given to it on the standard output.
For example,

 echo Whats up, doc?

will print What's up, doc? on the screen (default for standard output). If echo is
used inside of a script (discussed later) there would need to be double quotes around
the words to print.

The echo command can also be used to display the values of environment variables.
Environment variable names are denoted by a dollar sign, like this

 echo $PATH

finger
The “finger” command allows users to see who owns a given user account. This is
done by typing “finger” followed by the account name, like this

 finger asndcy

grep
The “grep” command finds lines of text that contain a given string. For example, to
find the lines containing the word “energy” in the file water.out use

 grep energy water.out

The “-i” flag to grep specifies a case insensitive search.

head
The “head” command prints the first part of a file given to it as an argument. For
example, the following would print the first 30 lines of the file water.txt

 head -30 water.txt

By default head outputs 10 lines of text.

�73

 HPC User Manual - 11th Edition � Working with Linux

ldd
The “ldd” command prints the list of dynamically linked libraries called by a
program, or another library. For example

 ldd /opt/asn/bin/f2c

This is used to analyze the problem when a dynamically linked program can’t find it’s
libraries.

mail
The “mail” command invokes an electronic mail system. The mail command can be
used to send mail. The ASC supercomputers do not allow mail to be received. For
example

 mail myname@my_school.edu

sends mail to your campus email. The user names are arguments to the command.
Users are prompted for a subject after the command. The letter should be entered line
by line and finished with a line containing only a period or a CTRL-D character.

Alternatively, the redirection operator < may be used to route a letter prepared with
an editor to mail. For example

 mail myname@my_school.edu <errors.txt

would send the previously prepared letter to the your campus email address.

For contacting the technical support staff, it is better to use your regular email
account, which allows them to reply to you. However, the mail command can be
convenient for writing scripts that automatically email information to your regular
email account.

�74

 Tip!

 HPC User Manual - 11th Edition � Working with Linux

man
The “man” command provides online documentation for all UNIX commands and
utilities, making quite detailed descriptions instantly available. The commands or
utilities are arguments to man. For example;

 man cat

will give a summary of the use of the concatenate command.

Another very useful feature is illustrated in this example

 man -k <keyword>

which will give information on all commands relevant to the given keyword.

nm
The “nm” command gives a list of functions in an executable or library. For example

 nm /usr/lib/libjpeg.a

This is used to determine which libraries need to be linked when a compile command
gives an unresolved symbol error.

passwd
The “passwd” command allows the user to change her password. No arguments are
required for the passwd command. The passwd command will prompt the user to
supply the old and new passwords.

The passwd command in use at the Alabama Supercomputer Center is slightly
different from the way this command is set up on other systems. The command at
this center gives the user the option of inputting a new password or letting the passwd
program generate a secure password. It only accepts passwords that cannot be broken
by common computer hacking utilities. If an invalid password is entered, it will
explain why the password is invalid. It is necessary to use a word that is not in the
dictionary and include a number or non-letter symbol.

�75

 HPC User Manual - 11th Edition � Working with Linux

ps
The “ps” command shows what processes are running in the current shell. The ps
command can be run without any arguments.

Note that the ps command does not show processes belonging to jobs submitted
through the queue system. Those jobs are running on other nodes in the cluster
and thus can be seen with “squeue” but not with “ps”.

sed
The “sed” command copies files (standard input by default) to standard output,
edited according to a script of commands. This is very powerful tool for writing
Linux scripts, but too complex to use to be covered in this manual. Users intending to
use Linux scripts to do string processing should look up the sed command in a book
on shell programming. Several good books on shell programming are referenced in
the bibliography at the end of this manual.

sort
The “sort” command can be used to sort lines of text. The simplest form of this
command would look like this

 sort <filename>

which sorts the lines in the file in lexicographical order, meaning that the alphabet is
extended to include special symbols and digits.

A command line flag can be put between the word “sort” and the file name. Here are
some useful flags for controlling the behavior of sort.

 -b ignores initial blanks
 -d uses a dictionary order, without special digits or symbols
 -f treats upper and lower case as equals
 -n sorts numerically
 -r reverses the sort order

One frequent use of sort is to put the results in a different file, like this:

 sort -o <output_file> <input_file>

�76

Reminder

 HPC User Manual - 11th Edition � Working with Linux

sudo
The “sudo” command allows a user to run a single command from the administrator
account (called the root account on Linux). sudo is used to install software and
perform other tasks on personal computers running some versions of Linux.
However, the Alabama Supercomputer Center has a technical staff to do system
administration on the supercomputers, so there is no reason that you will ever have to
use sudo from a user account. If you think you need sudo, try reading the
documentation on the software package, provided through the “ascdocs”
command, or contact the HPC technical staff at hpc@asc.edu

tail
The “tail” command prints the last part of a file given to it as an argument. For
example, the following would print the last 30 lines of the file water.txt

 tail -30 water.txt

By default tail outputs 10 lines of text.

top
The “top” command can be typed without arguments to see what processes are using
the most CPU time on the current node. The top command is exited by typing the
letter “q”.

Note that the top command does not show processes belonging to jobs
submitted through the queue system. Those jobs are running on other nodes in
the cluster. The top command only shows processes on the current node, the
login node, and thus cannot see queued jobs. The queued job status can be seen
with the “squeue” command, which is described in the section of this manual
about using the queue system.

wc
The “wc” command counts lines, words, and characters in files. By default, the wc
command will return counts for all three. The parameters -l, -w, and -c will limit the
report to lines, words, and characters, respectively. In the simplest form, the wc
command can be given just a file name, like this;

 wc .bashrc.local.dmc
 100 276 3399 .bashrc.local.dmc

The output indicates that the file .bashrc.local.dmc. contains 100 lines of text,
276 words, and 3399 characters.

�77

Reminder

 HPC User Manual - 11th Edition � Working with Linux

which
The “which” command gives the full path to the location of an executable file.
There is also a locally written “whence” command that works with aliases as well.
For example;

 which grep

who
The “who” command lists the login names of all users currently on the system, their
terminals, and when they logged on. The who command does not require any
arguments.

Linux also allows users, or at least their shell scripts, to ask existential questions with
the following commands;

 who am i
 whoami

Using Pipes and Regular Expressions
The previous section of this chapter discussed using Linux commands by typing
single command at the command prompt. One of the great sources of convenience
and power in the Linux operating system is the ability to easily use multiple
commands together.

Let’s look at an example of how to use this ability. Login on the supercomputer, and
check what software is available by typing the following.

 ls /opt/asn/doc

The /opt/asn/doc directory has a subdirectory for every piece of software. Because of
this, the ls command found hundreds of software packages. It is inconvenient to
wade through all of that information to find a specific application. However, Linux
gives a convenient way to find just the desired information. For example, to find
information relevant to the Gaussian software type the following;

 ls /opt/asn/doc | grep gauss

What happened here? The vertical bar “|” is called a pipe. That pipe tells Linux to
take the output from one command and feed it into the input of another command. A
large percentage of the commands in the previous section of this chapter can be used

�78

 HPC User Manual - 11th Edition � Working with Linux

in this way. The “grep” command outputs only the lines of text containing its search
query, called a regular expression. In this example, the regular expression is “gauss”.

For an example of piping more than two commands together, we could count how
many directories are found by typing the following;

 ls /opt/asn/doc | grep gauss | wc -l

Here the word count command (wc) is used to count how many lines of text are
output by the previous commands. Likewise pipes can be used to combine even 20
commands.

The grep command has a very rich set of options for selecting which lines to output.
The -v flag causes grep to display everything that does not fit the pattern.

The regular expression should be enclosed in single or double quotes if it contains
one or more blanks. A regular expression contains the usual ASCII characters, but
some characters have special meanings, depending on their location within the
expression. The characters with special meaning are . * [] \ $ and ^.

The period substitutes for any character in one position in the expression.
(Expression matching with the ls command uses a question mark in place of a
period.) For example, .abc will match with aabc, babc, 7abc, and so on, and a.bc
matches a1bc, a2bc, azbc, etc.

Multiple occurrences of a character may be matched with an asterisk. For example,
a*bc will match patterns with zero or more characters between the “a” and “b”
characters, such as occurrences of axbc appbcd abc aaaaaaaaaaaaaabc etc.

A backslash before a special character will remove the special meaning from the
character, so that it can be matched for itself. For example, * within a regular
expression will match * in that position.

The carat ^ means the start of a string or line. The dollar sign means the end of a
string or line.

�79

 HPC User Manual - 11th Edition � Working with Linux

Redirection of Input and Output
Standard input and output may be redirected for any process with the use of the
symbols < and >.

Putting the following after a command “<file.txt“ redirects standard input (by
default, the keyboard) so that input is taken from the file named after the symbol.
This can be used to automate tasks that normally require input from the keyboard.
The exact input from keyboard, including returns, can be put in a file and piped into
the command.

Putting the following after a command “>file.txt” redirects standard output (by
default, the screen) to the file named after the symbol.

WARNING: When output is redirected to a file with >filename any information
currently stored in the file specified is overwritten and lost.

Here is an example of putting the output of the ls command into a file.

 ls >ls.txt

The special symbol >> appends new data to the named file. Thus the following
command would double the size of the ls.txt file from the previous example and result
in having two copies of the same information in the file.

 ls >>ls.txt

Putting the following after a command >&file.txt redirect both stdout and stderr
to the file.

Putting the following after a command <<xxx redirects input until it encounters a
line with only xxx, beginning in column 1. This can be used in scripts to put an input
file inline within the script.

Introduction to the nano Text Editor
Programming language source code, scripts, and the input files used for many
applications are text files. It it convenient to be able to create, edit, and view text files
via an ssh connection to the supercomputers. This is done with a text editor. A text
editor is like a word processor that only creates text files, similar to Notepad on a
Microsoft Windows system or TextEdit on a Macintosh.

�80

!

 HPC User Manual - 11th Edition � Working with Linux

There are a number of text editors available for Linux systems. This manual will
discuss two of those editors named “nano” and “vi”. The nano text editor is an
excellent choice for first time users. Power users often expend the additional effort to
learn the more powerful vi editor. This section of this manual discusses nano. The
next section of this manual discusses vi.

The nano text editor is an easy to use editor for creating ASCII text files from a
terminal window. The nano program is not included with all distributions of Linux
and Unix, but it can be downloaded free from http://www.nano-editor.org/ On the
ASC supercomputers, nano is in users default path.

To invoke nano type the following command:

 nano [options] <filename>

A complete list of the nano command line options can be seen by typing
“man nano”. This description discusses the most frequently used options.

Most frequently, users edit files without using any of the optional command line
arguments. For example, the file myscript.sh could be edited with the command

 nano myscript.sh

�81

Figure 8.3

The nano text
editor.

 HPC User Manual - 11th Edition � Working with Linux

The nano program fills the whole terminal window, as shown in Figure 8.3. The top
line shows the nano header including the name of the file you are editing in reverse
video. The second line of the screen is left blank to be more visually appealing….
this does not mean that the first line of your file is a blank line. The text of your file
is displayed in the middle of the screen. The bottom of the screen displays most used
nano commands in inverse video. The carat ^ means to hold down the control key
on the keyboard while typing the following letter. The prompts at the bottom of the
screen display upper case characters, but the same letter in lower case works as well.

The cursor position is indicated by a single character in inverse video. Move the
cursor around the screen with the arrow keys. Any text you type will be inserted to
the left of the cursor. You can position the cursor one line beyond the end of the file
to append new text, even though the file may not have a blank line at the end. The
Backspace key deletes text to the left of the cursor, and the Delete key deletes the
character that the cursor is positioned over.

The changes you make are now written out to the file until you tell nano to write
them. Typing CTRL-O results in writing out to the file.

If you type CTRL-X to exit without first writing the changes to the file, nano will ask
if you want the changes saved to the file.

Here is a sample nano session.

The user should be in the directory in which the new file is to be located.

To begin editing the sample file from the previous exercise called hello.f in the
current working directory, type:

 nano hello.f

The editor will display a screen like the one in Figure 6.3.

Position the cursor at the end of the word Hello then type another word, say
World. Type CTRL-X to exit nano. The nano program will ask you want to
save the changes that were made to the hello.f file. Type Y to save the changes.

Recompiling the program will now give an executable that prints out
“Hello World”.

�82

EXAMPLE

 HPC User Manual - 11th Edition � Working with Linux

Introduction to the Screen-Oriented Editor vi
The “vi” editor is a very powerful text editor for Unix and Linux. The vi command is
part of the Unix and Linux operating system, thus it should be on every Linux
computer. The vi editor is designed to be used over a text only connection, such as
ssh. In order to get a very powerful editor without the benefit of a mouse, and pull
down menus, vi uses a rather complex set of keyboard commands. This makes vi
powerful, but difficult to learn.

Users who will spend a significant amount of time creating text files on Linux
systems (i.e. systems administrators and programmers) will find the effort
expended learning vi to be well worth the time invested. Users who only
occasionally create or edit small files on Linux computers are advised to use the
nano editor until the time comes that they find nano no longer meets their needs.

The vi editor has a command mode and a text input mode. When vi is first started it
is in command mode. In command mode any key pressed is interpreted as a
command to perform some function. Entering commands to insert, append, or
overwrite text put the editor into text input mode. When the editor is in text input
mode, any text typed is put into the file being edited. The esc key is pressed in order
to exit text input mode and resume command mode.

The following narrative intersperses an example vi session with a listing of vi
commands.

Sample vi session

Edit a file in the directory where the file is located or should be located (in the
case of a new file). Begin editing a new file by typing the following:

 vi file.txt

Insertion of text can be done after issuing the i command by typing the
following;

 i
 Augy had a little lamb,
 its fleece was white as snow (etc)
 <esc>

Move about in the file with the h j k and l keys when in command mode
(the <esc> returns one to command mode).

�83

EXAMPLE

 Tip!

 HPC User Manual - 11th Edition � Working with Linux

Cursor Positioning Keys--in the Command Mode

 h Moves cursor one character to the left.
 j Moves cursor down one line anywhere in text.
 k Moves cursor up one line anywhere in text.
 l Moves cursor one character to the right.

Move with these keys to the "f" in "fleece" in the second line, and type cw. The word
"fleece" disappears, replaced by a $. Type "fur" in substitution then esc.

To save the file, with changes, type :wq This exits to the shell.

Entering text input mode--End this mode with an <esc>

 a Append text after the cursor. Enter as many lines and<return>'s as
needed.

 i Insert text before the cursor. Enter as many lines of text and <return>'s
as needed.

 o Open a new line below cursor. Ready for the text input.

 O Open a new line above cursor. Ready for the text input.

 R Replace characters on the screen, starting at the cursor, with any
characters typed.

These commands, after execution, return the editor to the command mode

 r Replace a single character under the cursor with a single character that
is typed.

 /foo Search sequence; looks for next occurrence of pattern following / (in
this case, the word "foo").

 ?foo Search sequence; like /, but searches backwards from the cursor.

 n Used after / or ? to advance to the next occurrence in the buffer of the
pattern.

�84

 HPC User Manual - 11th Edition � Working with Linux

 u Undo the last command.

 U Undo all the changes to the current line.

 x Delete character highlighted or underlined by the cursor.

 or # or CTRL-H This backspace feature of the shell also works in
the editor. These commands move the cursor character by character, left within a
line, erasing each character from the buffer.

 CTRL-F Scroll or page the screen forward one page at a time.

 CTRL-B Scroll or page the screen backward one page at a time.

 CTRL-D Scroll or page the screen down one-half page at time.

 CTRL-U Scroll or page the screen up one-half page at time

 CTRL-G Identify the line where the cursor is located by line number.

 nG Position the cursor at line n in the file.

 :%s/text1/text2/g Replace all instances of text1 with text2
throughout the entire document.

Operators in the Command Mode

 d Delete indicated text starting at the cursor. For example, use dw to
delete a word and dd to delete a line; 3dd deletes 3 lines. Deleted text is stored
temporarily in a buffer whose contents can be printed out with the p command. Also,
d can be used with named buffers in the manner described for y command.

 c Delete indicated text starting at the cursor and enters Text Input Mode.
Thus, cw deletes from the cursor to the end of the word, allowing users to add text
between those positions.

 y Copy indicated text, starting at the cursor, and stores it in a buffer.
There are nine unnamed buffers (1-9) that store the last nine delete or yank
operations, and 26 named buffers (a-z) that can be used for storage. The double quote
mark (") is used to tell the editor the name of the buffer. Thus, "cy$ will store text
from the cursor to the end of the line in a buffer named c.

�85

 HPC User Manual - 11th Edition � Working with Linux

 p Inserts "delete" and "yank" buffer contents after the cursor or on the
next line. Command p puts the last item yanked or deleted back into the file just after
the cursor, and "cp will put the contents of buffer c after the cursor.

Scopes for Use with Operators

 e The scope from the cursor to the end of the current word; e. g., if the
cursor is on the "u" in "current", and the user types de, then "urrent" is deleted.

 w The scope is from the cursor to the beginning of the next word,
including the space.

 b The scope is from the letter before the cursor, backwards, to the
beginning of the word.

 $ The scope is from the cursor to the end of the line.

 O The scope is from just before the cursor to the beginning of the line.

) The scope is from the cursor to the beginning of the next sentence. A
sentence is ended by ".", "!", or "?", followed by 2 spaces or by an "end of
line" (provided by the <return> key).

 (The scope is from just before the cursor back to the beginning of the
sentence containing the cursor.

 } The scope is from the cursor to the end of a paragraph. A paragraph
begins after an empty line.

 { The scope is from just before the cursor back to the beginning of a
paragraph.

Leaving the Editor

 <esc>:w Write the contents of the buffer into the current file of the same
name. Can write to a new filename. Also, can send partial buffer contents using line
numbers, such as A:3,10w popcorn.

 <esc>:q Quit the buffer after a :w command.

 <esc>:wq Write and quit, placing buffer contents in file.

�86

 HPC User Manual - 11th Edition � Working with Linux

 <esc>:q! Quit editor without making changes in file. Dangerous.

 <esc>ZZ Write and quit, placing buffer contents in file.

Using the ex editor while in vi

 : Generate a colon (:) prompt at the bottom of the screen and let users
make one ex command. Users are returned to the vi mode when the command
finishes execution.

 Q Quit vi and place users in the ex editor, giving users a command mode
prompt, the colon (:) at the bottom of the screen. Users can get back to vi while in
the command mode.

When in Doubt

 esc Put users in the command mode.

There are many good books with tutorials on the use of the vi editor. One such is
published by O’Reilly & Associates, Inc. and is titled “Learning the vi and Vim
Editors” by Arnold Robbins, Elbert Hannah, and Linda Lamb.

Shell Scripts
This manual has already discussed a number of features that make Linux a very
powerful command line environment. One of the best features of all is that anything
that can be typed on the command line can be automated by putting the same
commands in a shell script.

Users that only run software already installed on the supercomputers may not need to
read this section of the manual. Users who write their own software, want to do
system administration, or find themselves doing a large amount of repetitive typing
should read on.

A shell script, or just script, is different from a binary program in that the script is not
compiled into an executable, machine language file. A script is a text file which
contains commands in some scripting language. The script language interpreter
executes the commands as it reads that text file. The advantage of shell scripts is that
they are easy to write and automate tasks. The disadvantage is that they run much
slower than compiled programs and are thus not an appropriate way to write the main
program that uses thousands of hours of CPU time. Shell scripts automate many
tasks within the operating system, and for the convenience of the users. Often scripts

�87

 HPC User Manual - 11th Edition � Working with Linux

wrap the computationally intensive program, meaning that the shell script stages input
data to the working directory, sets up environment variables, creates a nodes list, calls
the computationally intensive program, then copies the results back to the users home
directory.

There are thousands of scripting languages. Here are just a few to consider. Bourne
shell scripts can be used to automate tasks on both Linux and Unix computers. Bash
shell scripts have some enhanced features, but are specific to Linux and not on most
Unix systems by default. Perl is a scripting language specifically for generating
reports of data with a tabular format. Python is a scripting language powerful enough
to approach the level of capability of a compiled programming language, thus making
it sometimes ideal for rather large scripting projects that aren’t quite big enough to
justify going to a compiled language. The rest of this section of the manual will
discuss Bourne shell scripting only.

A shell is the process which interacts with the commands issued by a logged-on user.
Each logged-on user has his own shell. A new shell (and even multiple new shells)
can be created by a user with the command “sh”. The command can also execute
shell scripts.

For example If the file named “check” contained the lines

 #
 date
 who

then the command

 sh check

would create a separate shell from the one the user is operating under, execute the
commands (printing the date and the current users on the screen), and return to the
user's original shell. The new shell would disappear as soon as the commands were
finished executing.

To create a check file that can be executed directly, without typing sh every time,
write it like this.

 #!/bin/sh
 date
 who

Then make it be an executable file with the command

�88

 HPC User Manual - 11th Edition � Working with Linux

 chmod +x check

Now you can just type “check”. This shell script works as though it is any other
program, even though it is not a compiled program.

Another useful scripting feature is to use the accent character (backwards single quote
at the top left of the keyboard) to feed the output from a command into a variable in
the script, like this.

 myname=$(whoami)

This can be combined with the pipe discussed previously to make the following
script, that we named myscratch

 #!/bin/sh
 # This shows only my data in /scratch
 myname=`whoami`
 ls -l /scratch | grep $myname

Once the chmod command is used to make myscratch executable, you can type
“myscratch” and see a listing of only your own jobs in the queue system. This is
much more convenient than wading through thousands of lines of output to find the
relevant information.

Scripts can contain many of the constructs found in other languages such as variables,
loops, arrays, conditional statements (“if” statements), and subroutines. Some
scripting languages have very rich feature sets, such as Python having more string
processing functions than most compiled languages. Many books on scripting with
titles containing phrases like “Unix Shell Programming”, “Learning BASH”,
“Python”, or “Linux Shell Scripting” can be found at most book stores and libraries.
A selection of these books are listed in the Bibliography at the end of this manual.

�89

 HPC User Manual - 11th Edition � Working with the Queue System

9. Working with the Queue System

Nearly all supercomputing facilities use a job queue system. A job queue system is
similar to a printer queue in that a pile of work can be submitted, then the queue
system software will start each job when the necessary resources become available.
In the case of a job queue system, the resources being managed are computer
processors, memory, and sometimes software licenses.

The queue system is the researcher’s friend. If you want to get a large amount of
work done, the best thing you can do is learn how to utilize the queue system
effectively.

A queue system is a valuable tool for users. A pile of jobs can be submitted on Friday
night to be run when resources become available. Before the invention of queue
systems, supercomputer users would frequently find themselves having to log in at
2:00 a.m. on a Sunday morning because that was when the resources were available.
The queue system also guarantees that the users job will get the number of CPUs and
amount of memory that they requested when the job was submitted.

Programs run interactively (without using the queue system) on the login nodes
are limited to 10 minutes of CPU time. After 10 minutes, interactive jobs are
automatically killed. Any job larger than this, or using more than 2 cores, must
be run through the queue system.

The queue system at the Alabama Supercomputer Center is a SLURM queue system.
SLURM is a more recently created queue system, which is designed for improved
security and to scale up to manage very large computing systems.

WARNING: If you see error messages when you login via ssh, those same errors
will prevent your jobs from running correctly through the queue system.

The SLURM queue system readily facilitates integrating multiple clusters under one
queue system. Thus a job submitted from the dmc.asc.edu login node may actually
end up running on the UV compute node. The queue scripts provided for running
individual applications have been written to allow the software to run on any node
where the specific application can be run. The queue scheduler will run the
calculation on the node that gives the best turn around time. Users compiling their
own applications must either specify the cluster where the application is compiled, or
compile for both clusters and create a run script to select the correct version of the

�90

Reminder

 Tip!

!

 HPC User Manual - 11th Edition � Working with the Queue System

software. Submitting user written software to the queue system is discussed later in
this manual.

Selecting a Queue
There are a number of queues available. A list of the queues available can be
displayed with the “qlimits” command. The qlimits command can be called
without any arguments, or with a “-a” flag. Calling qlimits gives an output like the
following

Queue Wall Time Mem # Cores
------------------------ ---------- -------- --------
express 4:00:00 16gb 1-4
small 60:00:00 4gb 1-8
medium 150:00:00 16gb 1-16
large 360:00:00 120gb 1-64
huge 360:00:00 256gb 64-128
class 16:00:00 64gb 1-64

Interactive limits:
 Wall Time Mem # Cores
----------------------- ---------- -------- --------
INTERACTIVE 00:10:00 4gb 2

The “Wall Time” column in this output gives the amount of time that can be requested
in the format HH:MM:SS. The “Mem” column shows the maximum memory that
can be requested, which is a total for all CPUs. The “# Cores” column shows how
many CPU cores can be requested by a job in that queue

The express queue is accessible to everyone on the system. Express jobs are limited
to 4 hours of wall clock time. Also, only one job per person can be in a run state in
the express queue. This makes it unusable for the majority of research calculations.
However express jobs get into a run state almost immediately.

An old supercomputer users trick is to submit a test job to the express queue, let it
run a few minutes, then kill it. This is done as a check on whether the input file is
constructed correctly, as incorrect inputs typically cause the calculation to fail
within the first few minutes. Once this check on correct inputs is made the job can
be submitted to the appropriate queue to allow it to run to completion.

The small, medium, large, and huge queues are available to all users of the system.
These queues are used to run the majority of the work on the supercomputers.

�91

 Tip!

 HPC User Manual - 11th Edition � Working with the Queue System

The “class” queue is available for working on course homework assignments. It is
typically only accessible to class accounts. These accounts only exist for the duration
of the semester, and contain the letters “cls” in the account name. Instructors wishing
to get class accounts for their student should contact the staff at the Alabama
Supercomputer Center by emailing hpc@asc.edu

The “huge” queue will run only one job at a time per user. It can queue to the DMC,
but not the UV. Work submitted to this queue must be MPI parallelized.

The “special” queue is available for academic research that requires resources beyond
those available through the large queues. Access to the special queues is turned on
for a six month period of time, after having been granted access to this queue. In
order to get access to the special queue, the user must first do a time complexity
calculation to estimate the amount of CPU time and memory required by their job.
They must then have their research adviser send a request for special queue access,
including the resource requirements and a description of the work to hpc@asc.edu
The special queue allows only one job to run at a time per user. This is done because
the system has capacity to allow a few people to be running exceptionally large jobs,
but can’t support allowing all users to run jobs of this magnitude.

A second mechanism for running exceptionally large jobs is to request dedicated
machine time. Dedicated time means having the entire resources of the Alabama
Supercomputer Center (or one of the clusters) reserved for the use of just one person.
This is done for a once in a lifetime type of opportunity. For example, the last use of
dedicated machine time was by a UAH professor who had their experiment flying on
the space shuttle, and thus had to get data from the shuttle, use that data to run a
simulation, and use the simulation results to call back up to the mission specialist on
the shuttle to alter the experimental settings. Getting dedicated time requires months
of prior planning, proposals and arrangements.

A third way of getting larger than normal resources is do a collaborative computing
hardware purchase. A researcher with computing needs beyond what the existing
facilities can accommodate can work with the Alabama Supercomputer Authority to
contribute money towards the purchase of additional computing resources. There
would then be queues that are only accessible to the members of that research group,
which has additional CPUs reserved for their usage. For example, there were once
queues named dixon-serial and dixon-parallel, which were for the use of researchers
working for Dr. David Dixon at the University of Alabama. One advantage of doing
this is that the staff at the Alabama Supercomputer Center can take care of system
administration, hardware maintenance and software installation. Another advantage
is that it is possible to run work that utilizes both the resources purchased by the
faculty members and the existing resources to run calculations larger than could be
run if the same grant money were used to simply put a new system on campus. This

�92

 HPC User Manual - 11th Edition � Working with the Queue System

can result in getting access to a very large amount of computing resources, as a few
hundred thousand dollars buys a large amount of computing power at today’s prices.

The “commercial” queue is available to industry customers. These customers are
paying by the dedicated hour for access to the computing resources. For a quote on
purchasing processing time, contact the HPC staff at hpc@asc.edu

The “sysadm” queue is used by the staff at the Alabama Supercomputer Center. It is
used for testing new queue settings, reproducing problems users are having, testing
hardware, and other administrative functions.

Monitoring Jobs
The “squeue” command shows what jobs are running and pending in the queue
system. The squeue command supports a wide range of display options. The default
options are set with a global alias, as seen with the “whence squeue” command.
Typing “squeue” gives an output like this

JOBID NAME USER TIME ST QOS
30008 VASP asnabc 11-11:36:28 R large
30286 Ka1942shSC asnabc 8:32 CG huge
30341 scr8SCRIPT asnabc 12-12:56:40 R large
36601 pmemdAMBER asnabc 0:00 PD large

The first two columns of this output shows a list of jobs. The job number is in the left
hand column. The job number can be used to get more information about the job, kill
the job, or request help from the ASC staff. This output also show a job status
indicated by R or PD or CG. If the status is R the job is running. If the status is PD
the job is waiting to run, or pending. The status CG indicates that the job is
completing. squeue shows only your own jobs. QOS stands for “quality of service”,
which is simply what SLURM calls its queues.

Other squeue options can be seen with the command “man squeue”. To use these
options, it may be necessary to turn off the default behavior with the command
“unalias squeue”.

The staff at the Alabama Supercomputer Center have written a number of scripts to
show what your jobs are doing in more convenient formats. Try running
“squeue3”, “squeue4”, or “squeue5” to see other information.

Jobs may be pending for a number of reasons. The job could be requesting more
memory, CPUs, or software licenses than are presently available. It is sometimes the

�93

 Tip!

 HPC User Manual - 11th Edition � Working with the Queue System

case that the requested resources aren’t within the capabilities of the cluster. The
easiest way to find out why a job isn’t running is with the command;

 checkjob_asn <job_number>

The checkjob_asn command analyzes various information and attempts to output a
description of why the job isn’t running. Additional information can be obtained with
the commands “checkjob_asn2”, “checkjob_asn3”, “checkjob_asn4”,
and “checkjob_asn5”.

Once a queued job completes, an additional file will be created in the directory with
the job inputs. This is referred to as an error log file. The file name consists of the
job name from the queue and the queue job number. This file contains information
about how the job was submitted to the queue, stdout output from the job, and stderr
output from the job. If a job fails to start or fails to run to completion, this file is one
of the primary places to find out what is wrong. If you contact the ASC staff for help,
they will want to see this file. Simply giving the technical staff the directory you are
in and the job number is sufficient. The technical staff members can go into user
directories, but do so only when asked for help.

The command “jobinfo -j JOBNUMBER” gives information about the job. If
this command is called before the job is complete, it gives information about how the
job was submitted to the queue. Calling the jobinfo command after the job is
complete shows information about the jobs resource utilization, like this;

asndcy@dmc:tests> jobinfo -j 41697

Alabama Supercomputer Center - SLURM Epilog
Your job ID was: 41697
Your job name was: parallel2comG09
Your job started at: 2016-07-22T10:19:38
Your job ended at: 2016-07-22T10:20:15
Your elapsed time was: 00:00:37
Your username for this job was: asndcy
Your account for this job was: users
Your group for this job was: analyst
Your partition was: dmc
Your architecture for this job was: nehalem
Your max memory used was: 128756K
Your CPU time was: 00:01:14
Your number of processors used was: 2
Your job state is: COMPLETED
Your exit code is: 0:0
Your CPU utilization was: 100%
Your job ran on nodes: dmc112
Your job submit QOS was: small

�94

 HPC User Manual - 11th Edition � Working with the Queue System

This information is useful for determining why the job died, and what resources it
needs. For example, if the job requested 2gb of memory and it used 2234mb (>2gb)
of memory, the queue system may have killed the job due to exceeding its memory
allocation. The results from a job that ran correctly can be used to determine how
much memory should be requested next time.

Jobs that request more CPUs and memory can take longer to get into a run state.
Thus it is to the users advantage to request a reasonable amount of memory,
usually about 20% more than the job is expected to need. Choosing the optimal
number of CPUs is discussed in the parallel processing section of this manual.

Deleting Queued Jobs
It is sometimes necessary to delete jobs from the queue. This can be because the job
was submitted with the wrong inputs, isn’t running correctly, or is stuck in a pending
state due to invalid queue settings. Running or pending jobs can be deleted with the
command

 scancel <job_number>

Running Existing Applications Software
Applications software installed by the ASC staff have both an associated queue script
and a README.md file with notes specific to running the software on the ASC
systems. The README.md files are in subdirectories of /opt/asn/doc For example,
the notes on how to use the Gaussian software are in the directory
/opt/asn/doc/gaussian In the example of the Gaussian software, a calculation using
the input file water.com (which would have to be in the current directory) can be run
with the following commands.

rung09 water.com
This runs Gaussian in the current directory via the queue system
Report problems and post questions to the HPC staff (hpc@asc.edu)

Choose a batch job queue:

Queue Wall Time Mem # Cores
------------------------ ---------- -------- --------
express 4:00:00 16gb 1-4
small 60:00:00 4gb 1-8
medium 150:00:00 16gb 1-16
large 360:00:00 120gb 1-64
huge 360:00:00 256gb 64-128
class 16:00:00 64gb 1-64
sysadm 168:00:00 4tb 1-1000

�95

 Tip!

 HPC User Manual - 11th Edition � Working with the Queue System

Enter Queue Name (default <cr>: small) small

Enter number of processor cores (default <cr>: 2) 2

Enter Time Limit (default <cr>: 60:00:00 HH:MM:SS)

Enter memory limit (default <cr>: 1gb) 2gb

Choose your job starting date and time (<cr> for now):
If not running right now, enter time and date as
[[CC]YY]MMDDhhmm[.ss]

Enter a name for your job (default: watercomG09)
parallel2

==
===== Summary of your Gaussian job =====
==
 The input file is: parallel2.com
 The output file is: parallel2.com.log
 The time limit is 60:00:00 HH:MM:SS.
 The target directory is: /home/asndcy/calc/gaussian/tests
 The memory limit is: 2gb
 The number of CPUs is: 2
 The job will start running after: 2016-07-22T10:19:35
 Job Name: parallel2comG09
 Virtual queue: small
 QOS: -p dmc,uv --qos=small
 Constraints: --constraint=dmc|uv

The output file will not be placed in your directory,
until the job is complete.

Gaussian has default memory and disk use set for the small queue.
For other queues, set %mem and MaxDisk in your input file.

 Queue submit command:
sbatch -p dmc,uv --qos=small -J parallel2comG09
--begin=2016-07-22T10:19:35 --requeue --mail-user=dyoung@asc.edu -o
parallel2comG09.o%A --mail-type=FAIL,END,TIME_LIMIT -t 60:00:00 -N
1-1 -n 2 --mem-per-cpu=1000mb --constraint=dmc|uv

Submitted batch job 41697

All of the queue scripts on the system use this same set of prompts for the queue,
memory, etc. If it is not possible for a given program to run in parallel, the script will
not ask for a number of CPUs. With many programs, it is necessary to construct the
inputs appropriately for parallel execution, as well as requesting multiple CPUs from
the queue script. It is possible to respond to all of the interactive prompts by pressing
“Return” to take the defaults. Once the queue has been entered, the default prompts
will reflect reasonable values for that queue.

�96

Press “Return”
to take the
default.

 HPC User Manual - 11th Edition � Working with the Queue System

If you use the same queue settings every time, you can set preferences so it knows
what you want and doesn’t give the prompt. This is done by editing
the .asc_queue file in your home directory. The comments in that file make it self
explanatory, but additional information is in the file /opt/asn/doc/slurm/
preferences.txt

Running User Written Software
When the user has written their own software, there will not be a queue script already
available tailored to that software. There is however, a queue script named
“run_script” which is configured to run any script that does not require arguments.
run_script forces the job to use one or more processors, all on a single node. There is
a “run_script_mpi” command for software capable of using processors on different
nodes. Consider the example of a user that has compiled a program on the uv. For
example, the program may be named foo and require an argument with the name of
an input file such as bar.inp In this example, the program can’t be submitted directly
to run_script because it requires an argument. However, the user can create a script,
say named myscript, that contains the following text.

#!/bin/sh
script to run the foo program on uv
source /opt/asn/etc/asn-bash-profiles-special/modules.sh
module load intel/15.0.0
./foo bar.inp

The user can put this text in the myscript file using a text editor such as nano. The
characters “./” in front of the program name indicate that the script expects to find
the foo program in the same directory as the bar.inp and myscript files. The source
and module lines load tell your program how to find the libraries that came with
version 15.0.0 of the Intel Compilers. If you had to load modules to compile the
software, you often must load the same modules to run that software. See the chapter
on Using Modules for more details.

The myscript file must be made executable with a command like this

 chmod +x myscript

This calculation can now be submitted to the queue system with the following
command;

 run_script myscript

�97

 Tip!

 HPC User Manual - 11th Edition � Working with the Queue System

The run_script program will give the same prompts as the other queue scripts with
one additional prompt. The final prompt asks which cluster it should be allowed to
run on. Since the program in this example was compiled on the uv, the user must
enter “uv” at this prompt.

Now consider what could be done if the program foo has been compiled twice make
both an uv executable and a dmc executable. In this case, the script must be able to
identify whether it is running on the uv or the dmc and use the correct version of foo.
A script like this is shown on the following page.

The following script must determine whether it is on the uv compute node or a dmc
compute node. The “hostname” command returns the name of the node. The uv
compute node is named uv1. The dmc compute nodes have names like dmc2 or
dmc34. The output from hostname is piped into the command
“tr -d ‘0123456789’”. The tr command can translate one character into
another, but the -d flag tells it to delete any of the specified characters. The small
back ticks before the hostname command and after the tr command tell the script to
execute those commands and place the result in the $myhost variable. This results in
having the $myhost variable set to either “uv” or “dmc” with no numbers appended.

For more information on writing scripts like this, see the section of this manual on
Shell Scripts.

 #!/bin/sh
 # script to run foo on either the uv or DMC
 source /opt/asn/etc/asn-bash-profiles-special/modules.sh
 myhost=$(hostname | tr -d ‘0123456789')

 # see if I'm on a uv node
 if ["$myhost" == "uv"]
 then
 module load intel/13.0
 foo_path=/home/asndcy/foo/bin_uv
 fi

 # see if I'm on a dmc node
 if ["$myhost" == "dmc"]
 then
 module load pgi/12.1
 foo_path=/home/asndcy/foo/bin_dmc
 fi

 # see if foo_path has been set
 if [$foo_path]
 then
 # run the program
 ${foo_path}/foo bar.inp
 else
 echo "ERROR: this is not uv or dmc"
 fi

�98

 HPC User Manual - 11th Edition � Working with the Queue System

This new script can be made executable, then submitted to the queue with run_script.
This time, when run_script asks which cluster to use, the user can press “Return” to
signify that it can run on either cluster.

Another function typically found in scripts submitted to the queue is copying the
work over to be done on the /scratch drive. The user home directories are visible to
all compute nodes, but these directories are on a lower performance file system. If
the calculation does a large amount of accessing data on the disk drive, it will run
faster on the high performance /scratch file system. Here is an example of a script
that utilizes /scratch

#!/bin/sh

Sample script for submitting jobs to the queue system
This script shows how to run the calculation
in the /scratch directory

Replace the USER name in this script "asndcy"
with your own user name.
Replace the program name "mandy_gcc" with your own program name.
Replace the input file name "test1.in" with your own input name.

This script must be made executable like this
chmod +x my_script

Submit this script to the queue with a command like this
run_script my_script

put in my user name
USER=asndcy

create a directory on /scratch
mkdir /scratch/$USER

copy the program and input files to scratch
cp mandy_gcc /scratch/$USER
cp test1.in /scratch/$USER

run the program
cd /scratch/$USER
./mandy_gcc test1

copy the results back to my home directory
cp test1.bmp /home/$USER

The application specific queue scripts and the run_script & run_script_mpi
commands are specific to the Alabama Supercomputer Center. Everything that you
can do with the queue system is accessible through these interfaces. However, some
users may be more familiar using “sbatch” as is done at many other computing
centers. The use of run_script and the application queue scripts is recommended.
The use of sbatch directly is strongly discouraged, and not supported by the HPC

�99

 HPC User Manual - 11th Edition � Working with the Queue System

technical staff. The run scripts wrap sbatch, and thus allow improvements and
adaptations to changing needs on a regular basis. Thus users who want to use sbatch
directly will find that they have to do so without documentation or technical support,
and that they will have to change the options they give to sbatch as frequently as
every six months.

User written MPI software should be launched with the srun command when run
through the queues. Short tests (no more than 2 processors and 10 minutes) can be
run on the login nodes with the mpirun command. See the MPI documentation
accessible via the “ascdocs” command for additional information.

Queue System Fairness
Job queue systems are highly configurable. Even another facility using SLURM may
have it configured to operate much differently from the SLURM installation at the
Alabama Supercomputer Center. An organization that does weather prediction may
have the queue system configured with reservations to ensure processors are available
to run todays weather predictions at the same time every day. Many organizations
have a system in place to charge users for the cost of processing time. Some
organizations allocate computer resources based on the relative priority of various
projects. The administration of the HPC systems at the Alabama Supercomputer
Center is based on the following management principles;

• Select hardware to minimize unplanned outages, meet users' needs, and get a good
amount of processing power for the cost.

• Provide some resources not available on most campuses (i.e. very large memory
systems)

• Provide access to cutting edge technologies, as budget allows.
• Put significant effort into good documentation, in order to operate with a minimal

support staff.
• Proactively innovate for ease of use.
• Proactively correct problems.
• ASA does not render judgment on the merit of client work.
• No in-house research is being done at the Alabama Supercomputer Center.
• Make the systems useful to as many clients (and disciplines) as practical.
• Assign resources based on policies that are applied equally to all users in the same

category (research, classroom instruction, ASA's collaborators, or commercial).
• Encode policies in queue software, as much as possible. We do not manage based

on "gentleman's agreements" or daily/weekly monitoring of users' behavior.
• Have a quick turnaround time on user help requests, with a necessarily longer

turnaround time on software install requests or purchase requests.
• Find a balance of three, sometimes conflicting, goals;

�100

 HPC User Manual - 11th Edition � Working with the Queue System

1. Maximize allocation of resources (processors in a run state).
2. Attempt to give users submitting large job loads an approximately equal

number of processor cores as other big users.
3. Set priorities to give shorter average queue wait times for users submitting

a light job load than for users submitting a heavy job load.

In order to implement these ideals, a quantified fairness metric is used. Each month,
the following ratio is computed for all users. This gives a range of values, typically
arranged as a gaussian distribution with some users over- or under-advantaged and
many clustered around the mean. Queue system scheduling configuration settings are
then adjusted to minimize the standard deviation of this distribution.

 (monthly dedicated hours for person X)
 —————————————————— = user fairness for X
 (average wait time in seconds for person X)

We will note that there are some implications of this fairness metric. All users are
considered equal. Thus job scheduling does not take into account the research group,
project, or academic department. Jobs requesting many processors should and do
wait in a pending state longer than single processor jobs, as the multi-processor jobs
will get more processing time once they get into a run state. Some jobs may wait a
shorter or longer than average amount of time, as fairness is defined on average but
not on a per-job basis.

The queue system is configured to view the hardware as a large pool of available
resources. As such, there are not X many processors assigned to the small queue, and
Y many assigned to the large queue. There are, however, some processors reserved
for the exclusive use of the class queue to ensure that homework assignments do not
wait behind week-long research calculations.

�101

 HPC User Manual - 11th Edition � Efficient System Utilization

10. Efficient System Utilization
Parallel computing is a very elegant idea. The naive, partially correct idea is that a
computational task that takes 8 hours to complete using one CPU could be done in 4
hours on two CPUs and similarly scale to large numbers of CPUs. In actuality there
are many algorithms or steps of algorithms that can only be executed serially (single
CPU/thread execution). A second reason that this ideal case is not achieved, and
seldom close is that the program must do additional work to coordinate the efforts of
the multiple processors working on the calculation. In a few cases, each processor is
actually recomputing values that would have been computed only once if it were run
on a single CPU. Here are three examples to consider.

Example 1

 Number of CPUs 1 2 4 8
 Execution time (hrs) 8 4 2 1

Example 1 is called “linear speedup”. In reality there are very few algorithms that
approach this ideal case. A couple of examples of algorithms that can come close to
linear speedup are fractal geometry and testing encryption solutions. These
algorithms work so well because each CPU can be given a different piece of data to
work on, and will not need to access data or results from the other CPUs.

Example 2

 Number of CPUs 1 2 4 8 16 32
 Execution time (hrs) 8 4.5 3.2 3.5 5.3 12.7

Example 2 illustrates the most common case. Many algorithms can be parallelized to
some extent. Thus adding CPUs improves performance up to some optimal number
of CPUs. Going beyond the optimal number of CPUs often degrades performance,
since the code is doing more work to parallelize the problem than actually solving the
problem. The optimal number of CPUs depends on the algorithm being used, how
heavily it has been parallelized, and the size of the problem being solved. Examples
of problems that show this behavior are quantum chemistry and engineering
simulations based on finite element algorithms.

Example 3

 Number of CPUs 1 2 4 8
 Execution time (hrs) 8 8.2 10 23

�102

 HPC User Manual - 11th Edition � Efficient System Utilization

Example 3 illustrates an algorithm that parallelizes so poorly that attempts to do so
harm the overall performance. Some of the highly correlated quantum chemistry
algorithms show this behavior. This behavior can also be seen when the problem
being simulated is so small that it really only took a small amount of time to run on a
single CPU.

In theory the underlying algorithm determines how well a program can be
parallelized. In practice the extent to which the software developers have completely
rewritten the code for parallel execution is often the limiting factor. Even within a
single program, there might be a large difference depending upon which input options
were selected.

NOTE: At the time this user manual was last updated (July 2016) work was still
under way to implement a Parallel Efficiency calculation in SLURM.

There are several ways to get a quantitative measurement of how well a program is
parallelized. The software developers typically report a parallel efficiency as a
percentage. Parallel efficiency is the ideal time divided by the wall clock time. The
ideal time is the time to run the same calculation as an un-parallelized, single CPU
application divided by the number of processes being used in the parallel test.

 Parallel = (time to run single processor) * 100
 Efficiency (%) (number of processors) * (parallel wall clock time)

Thus if a calculation took 8 hours to run on a single processor and 2.5 hours to run on
four processors, it’s parallel efficiency would be 80%. As a general rule of thumb, if
the parallel efficiency is below 75%, it is better to use fewer processors for each job
and run more jobs at the same time. Parallel efficiency is one of the best measures of
how well a program has been parallelized. However, parallel efficiency isn’t
convenient for the users of the application to work with because it requires doing both
the single processor calculation and the multiple processor calculation.

It is often more convenient for users to look at the parallel utilization. The parallel
utilization is the CPU time divided by the dedicated time. The CPU time reported at
the end of the error log file is the sum total of the time that each processor was
actually running, not sitting idle. The dedicated time is the wall clock time times the
number of processors used.

 Parallel = (CPU time) * 100
 Utilization (%) (number of processors) * (parallel wall clock time)

If the parallel utilization is 100% it means that all of the processors were working all
of the time. If the parallel utilization is less than 100% it usually means that there

�103

 HPC User Manual - 11th Edition � Efficient System Utilization

were times during the calculation that just the master processor was running and the
other processors were idle. This happens because there are sections of the code that
are mathematically impossible to run in parallel, and because there are sections of the
code that haven’t yet been rewritten to run in parallel. For example, if four processors
are requested, the master process runs 100% of the time, and each of the three slave
processes run 5% of the time, the parallel utilization is 28.75%.

As a general rule of thumb, if the parallel utilization is below 75%, it is better to use
fewer processors (CPUs) for each job and run more jobs at the same time. Jobs also
tend to get through the queue system faster if the requested memory results in a
memory utilization of 80% or higher.

Parallel utilization is not quite as good a measure of program performance as parallel
efficiency. This is because parallel utilization fails to take into account that the CPU
time is usually somewhat larger than the time to run the single processor job. This is
because there is additional work involved in coordinating the efforts of multiple
processors and passing data between those processors. There are a few software
packages that show extremely large discrepancies between CPU time and single
processor execution time because each processor is recomputing values that would
have been computed only once in single processor execution.

Running Parallel Applications

Two things must be done to run a parallel application. First, the desired number of
CPUs must be requested from the queue system when the job is submitted. Second,
the application must be told how many CPUs to use, and sometimes requires a list of
which CPUs. Some of the application software queue submit scripts take care of both
of these.

Users writing their own codes will need to handle both tasks. The request to the
queue system is made with options to the “run_script” command or the
“run_script_mpi” command. The run_script command tells the queue system that
all CPUs must be on the same node. The run_script_mpi command allows CPUs to
be utilized on different nodes of the cluster. The way that the application is given a
CPU count depends upon the mechanism that was used to parallelize it.

Writing Parallel Software
Parallel computers do not automatically run applications in parallel. Each piece of
software must be written and compiled to run in parallel. This adds another whole
dimension to programming projects. Thus, it is advisable to read books and take
classes on parallel programming before embarking on a parallel programming project.

�104

 HPC User Manual - 11th Edition � Efficient System Utilization

The following paragraphs discuss parallelization mechanism available on the
computers at the Alabama Supercomputer Center. At present, MPI and OpenMP
constitute about 95% of the parallelized software for high performance computing
applications.

MPI (Message Passing Interface) is a message passing library standard. At the time
this manual was written, MPI was the most widely used parallelization mechanism.
MPI programs can run on both shared memory computers and distributed memory
clusters. Most of the programs that scale up to the use of hundreds of CPUs or more
are parallelized with MPI. The downside of using MPI is that converting a program
from serial to parallel usually requires rewriting a major percentage of the code.

OpenMP is an API for shared memory multiprocessing. OpenMP parallelized
programs can be run on shared memory computers, but not on distributed memory
systems. OpenMP is often desirable because a program can be parallelized in
sections with a fairly modest amount of effort. OpenMP generally works best for fine
grained parallelization (at the loop level), when parallel programs will be executed on
a small number of CPUs (2-16), and when all CPUs will be frequently accessing
shared data.

P-Threads is an API for handling Linux threads. The p-threads library is used by the
Unix operating system for managing multiple execution threads. It can also be used
by an application for writing a shared memory parallel program. Parallelization with
p-threads requires a large amount of low-level programming. Thus pthreads are
generally only used when there is a technical reason for needing this low-level control
over the shared memory threading.

Java threads The Java virtual machine has the ability to execute multi-threaded Java
programs. The support for manipulating threads is included in the Java language and
is augmented by open source libraries, such as the “spin” library.

PVM (Parallel Virtual Machine) PVM is the predecessor of MPI. Today most PVM
codes have been converted to MPI.

Coarray Fortran (CAF) is a parallel programming extension of the Fortran syntax
that allows a programmer to view a single shared partitioned address space.

High Performance Fortran is an extension of Fortran 90, which allows the
programmer to put in directives for parallel execution.

Parallel Math Libraries Some math libraries have versions that have been compiled
with support for parallel execution of the functions in that library.

�105

 HPC User Manual - 11th Edition � Efficient System Utilization

Parallelizing Compilers There are compilers that attempt to parallelize a serial
program automatically. At present this technology is still in its infancy, so other
parallelization methods almost always give a better parallelization.

Note: Parallelizing compilers are considered the holy grail of parallel
programming. However, this infancy stage technology does not yet perform as
well as other parallelization mechanisms.

Global Arrays The Global Arrays toolkit allows software to be written as though it
were on a shared memory computer, even though it may actually be running on a
distributed memory system. Global Arrays are often used in conjunction with other
tools, such as MPI or TCGMSG. The Global Arrays tools are implemented on top of
ARMCI (Aggregate Remote Memory Copy Interface). The TCGMSG message
passing library is also distributed with the Global Arrays toolkit.

Estimating CPU Time and Memory Needs
The HPC systems at the Alabama Supercomputer Center have multiple queues, which
allow jobs to run for various lengths of time and use different amounts of memory.
Most users of desktop computers aren’t used to thinking about how long it will take
the computer to do the work, or how much memory is required. This isn’t often a
problem on desktop computers because the computer has been designed with capacity
to run typical business applications, and uses a small percentage of that capacity most
of the time, except when it bogs down running a video game.

Processing time, memory and disk space become an issue with the type of
applications typically run on supercomputers. This is because these applications can
take days or weeks to run using hundreds of gigabytes of memory and terabytes of
disk space. Furthermore, there are hundreds of people running work on a
supercomputer. If resources like memory weren’t managed, one person’s program
would be killed when another person’s program used all of the memory. This doesn’t
happen because the queue system assigns memory and processors to each job, thus
guaranteeing access to the necessary resources. In order to make this system work,
the user must specify how much memory their job needs. If that estimate is
unreasonably high, it will result in waiting much longer for the job to get access to
those resources, and fewer jobs can be run at once. Thus it is to the advantage of the
user to know how to give a reasonable estimate of the resource needs for their
calculations.

The memory and CPU time needs for many calculations are often not proportional to
the size of the input. Consider the example of a software package that computes

�106

!

 HPC User Manual - 11th Edition � Efficient System Utilization

properties of molecules. This program might need to compute the distance between
each pair of atoms. Thus if there are 20 atoms, the distances between each pair could
be stored in a 20x20 element array, which would have 400 elements in the array.
Thus the amount of memory needed by this step of the program would be
proportional to the square of the number of atoms. Likewise the amount of CPU time
required to compute the distances between each pair of atoms would be proportional
to the square of the number of atoms. The size of the problem, in this example the
number of atoms, is typically called “n”. The time complexity or memory
complexity is then represented as O(n2), a format known as Big O Notation. The rest
of this section of the book uses the term “time complexity” but the same type of
analysis could be used for estimating memory or disk space needs.

Computer programs can have many different time complexities, and each function
within a given computer program can be assigned it’s own time complexity. Some
functions require the same amount of time, no matter how much data is involved, thus
giving a constant time complexity or O(1). Some things scale linearly with the size
of the problem, denoted as O(n). Some processes are slightly better than linear, such
as O(n log n). Many algorithms scale as some power of the size of the problem, such
as O(n3) or O(n8). There are a few algorithms that scale very badly, such as
factorially scaling problems with a time complexity of O(n!).

This slightly theoretical discussion of time complexity notation shows that different
programs and functions within programs scale differently. We must now find a way
to practically apply this knowledge to making an estimate of how long it will take to
run a given program. The first step is to look at some calculations that have already
been completed. The jobinfo command provides and output that looks like the one
shown in Figure 9.1.

If similar size calculations have already been run, simply runing jobinfo with the job
number from those calculations may be all that is needed to find out how much CPU
time and and memory to expect a calculation to require. Time complexity
calculations refer to CPU time, but wall clock time can be estimated as CPU time
divided by the number of processors being used, or a bit more than that if the
algorithm doesn’t parallelize efficiently.

�107

 HPC User Manual - 11th Edition � Efficient System Utilization

Many researchers will do several test calculations leading up to a large calculation.
They will do a small calculation to estimate the resource requirements of a medium
size calculation. Then use those results to estimate the requirements of the large
calculation. This is done using the time complexity of the algorithm. For example, if
the algorithm has an O(n3) complexity and the time for a smaller calculation (T1) is
known along with it’s size (n1), then the time for the larger calculation (T2) can be
computed from it’s size (n2) as follows.

 T2 = T1 * (n2 / n1)3

In these examples, the size might be the number of atoms, number of elements in a
finite element calculation, number of basis functions, or some other aspect of the
calculation. Often a moderate size calculation is better than a small calculation for
doing complexity estimates. This is because the smallest calculations have resource
utilization dictated more by overhead than by the critical portion of the code.

If you don’t know the time complexity of a software algorithm, there is a formula for
determining it. There is an example of how to do this in the file
/opt/asn/doc/gaussian/Estimating_CPU_time.pdf

If you logged in via X-Windows, this can be viewed with the command
“firefox /opt/asn/doc/gaussian/Estimating_CPU_time.pdf”
Otherwise, download it to your local computer to view the file.

A very few software packages have a “check” mode which performs an estimation of
the resource utilization, but doesn’t actually run the calculation. These should be
used when available, but they are unfortunately rather rare.

There is an experimental piece of software written at the Alabama Supercomputer
Center called “swami”. The name swami is a reference to an old Johnny Carson skit
where he played a mystical swami that predicted the answers to questions before
reading the question. Swami predicts the CPU time and memory required for
Gaussian and NAMD calculations. Swami uses an artificial intelligence learning
algorithm. Results of completed calculations can be loaded into Swami with the
“swami-learn” program. As more results are entered, the predictions made by
swami become more accurate. More information about swami can be found in the
directory /opt/asn/doc/swami

�108

 HPC User Manual - 11th Edition � Using Modules

11. Using Modules
The term “modules” is used in a number of different ways in the computer science
field. In this context “modules” refer to LMOD, which is a way of controlling your
account environment settings. Modules are used to configure your account to access
some of the software packages installed on the supercomputers.

If it is necessary to use a module for one of the software packages, the appropriate
module command will be described in the file
/opt/asn/doc/PROGRAM/README.md (i.e. /opt/asn/doc/gaussian/README.md)

The environment necessary to run modules is loaded automatically when you login.
However, this environment is not automatically visible to scripts that run through the
queue system. Thus if you are compiling your own software, you may have to
include the following in your run scripts, in order to use modules.

source /opt/asn/etc/asn-bash-profiles-special/modules.sh

In many cases, modules are working behind the scenes but you are not aware of them.
For example, jobs using the Gaussian software are submitted to the queue with the
command “rung09 <filename>”. The rung09 script calls the appropriate
module to load the Gaussian environment settings. These environment settings tell
the operating system where to find the Gaussian executables, the associated libraries,
and other data files. Modules can also remove conflicting settings, thus allowing
multiple version of the same software package to be installed without problems from
getting the wrong one accidentally.

The list of modules available on the system can be shown with the command

 module avail

Note that many software package have more than one version that can be accessed
through loading the appropriate module. One of those versions may be labeled as the
default version.

Information about a given module can be displayed with the command

 module help <module_name>

�109

 Tip!

 HPC User Manual - 11th Edition � Using Modules

The module name can be of the form “name” or “name/version”. Specifying a
name without the version will give information for the default version. For example,
try typing “module help gaussian”.

The list of modules currently loaded in your session can be shown with the command

 module list

Unless you have configured your account to automatically load modules on login, this
command will probably indicate that no modules are currently loaded.

A module can be loaded with a command like this

 module load <module_name>

For example, typing “module load gaussian” will load a default version of
Gaussian, as shown by typing “module list”. If your account has not been given
permission to access the Gaussian program, attempting to load it will give an error.
To load a different version of Gaussian, you could type
“module load gaussian/g09a02”. Module load commands can be put in
your .bashrc.local.uv & .bashrc.local.dmc & .bashrc.local files in order to
automatically load modules when you log in.

Loading a module may result in loading several other modules automatically. This
may be done if a piece of software needs access to the libraries associated with a
particular compiler, math library, or MPI version.

TIP: Specify the version when loading modules inside of scripts. The default version
is the most recent available, which changes every time a new version is installed.
This can cause your scripts to break if the version is not specified.

WARNING: It is possible to bypass the module system by setting the paths in your
script. However, loading the module also logs the fact that someone is using that
software. If the software use is not logged, software is flagged as unused and
removed from the system. As such, you should always load the module to access
software.

Modules can be unloaded with the command

 module unload <module_name>

�110

!

 HPC User Manual - 11th Edition � Using Modules

Modules can fix problems with multiple versions of the same software. However,
they can also create problems. Consider what happens when you load the module for
software package A. Loading the module for that software loads all of the modules
that it needs, such as version 10 of the Intel compilers. Now what happens when you
load the module for software package B, which needs version 12 of the Intel
compilers? Version 10 is unloaded and replaced with version 12. In this example,
loading software B may break software A.

WARNING: Loading multiple modules can sometimes break software packages.
Thus it is best to load only the modules for the work you are doing right now.

There is a way to unload all of the modules currently loaded with a single command.
This is done with the command.

 module purge

If you think loading too many modules may have broken something, type “module
purge” then load only the modules that are absolute necessary for what you are doing.

TIP: A shortcut for the module command is “ml”. Typing “ml” is equivalent to
“module list”. Typing “ml av” is equivalent to “module avail”.
Typing “ml NAME” loads the named module.  

�111

!

 Tip!

 HPC User Manual - 11th Edition � Account Configuration

12. Account Configuration
Casual users of Linux and the Alabama Supercomputer Center can skip this chapter
and still get all of their work done. Individuals that expect to spend a large amount of
their time on Linux will find a number of items in this chapter to make their work
more efficient. An understanding of account configuration is also useful to
understand why things aren’t working correctly, which is important if you want to
administer Linux systems.

WARNING: The parts of Linux described in this chapter fill important roles in the
operating system, and can be valuable tools. However, changing them incorrectly
can cause many things to break, at least for your own account. It’s best to tread
carefully, and ask questions if you feel you don’t understand how to use them
correctly.

The following sections discuss various ways to customize the behavior of your Linux
account. Many of these changes take effect the next time you login on the system.

Environment variables
Environment variables are values that are visible to all of the software running on a
computer. These are often used to tell the operating system how it should behave,
and to tell software packages which directories to find important files in.

Login to your Linux account and type the command “env”. This shows a list of all
the environment variables that your account currently sees. Some are found in all
Linux systems, some are specific to the bash shell, and some are specific to a given
computer program. Table 10.1 list a selection of the environment variables that are
amongst the more important to account configuration.

Some environment variables are redundant. For example, the variables
LIBRARY_PATH, LD_LIBRARY_PATH, LIBPATH, and SHLIB_PATH all tell the
operating system where to look for static libraries and shared object files (.so files are
dynamic linked libraries, equivalent to .dll files in Windows). There are multiple
environment variables doing the same job because some are used by different shells,
or linux distributions. Since different programs look at different ones, a redundant
configuration keeps all of the programs finding the paths to the libraries.

�112

!

 HPC User Manual - 11th Edition � Account Configuration

The value of an environment variable can be displayed with the “echo” command.
For example, the PATH environment variable tells the operating system where to look
for programs to run. You can see where the run_script program resides by typing
“which run_script”.

�113

Table 12.1 Useful environment variables

Variable What it Does

CLASSPATH Java programs use this to find their libraries

DISPLAY tells X-Windows where to display graphics

HISTSIZE number of commands displayed by the “history” command

HOME your home directory

HOST, HOSTNAME the computer (or cluster node) you are logged in on

HOSTTYPE, CPU the computer processor architecture

INCLUDEDIR, INCLUDE paths to header files

INFOPATH, INFODIR paths to data displayed by the “info” command

LD_LIBRARY_PATH,
LIBRARY_PATH,
LIBPATH, SHLIB_PATH

paths to static linked and dynamic linked libraries

LS_COLORS allows customizing colors used by the “ls” command

LS_OPTIONS default options for the “ls” command

MANPATH paths to data for the “man” command

PATH paths to find executable files

PS1 changes the bash command prompt

PWD the current directory

TERM terminal display settings

USER, LOGNAME your user name

_ (underscore) the command currently being executed

 HPC User Manual - 11th Edition � Account Configuration

To see all of the directories that the operating system is looking in to find run_script,
type the following;

 echo $PATH

You can set new environment variables, or add data to existing environment
variables. For example, you may want to create some of your own programs and
scripts. In order for those programs to be found when you run them, you can put
them in a new subdirectory, typically named /home/MYNAME/bin . In order to tell
the operating system to look for your programs in this directory, you would add a line
like this into your .bashrc.local file.

 export PATH="$PATH:/home/MYNAME/bin"

Note that by including $PATH: in the new value of PATH, you are appending a
new directory onto the existing path list. The directory names are separated by
colons. If you left out this $PATH: part of the line you would be taking away all of
the paths to the operating system commands, thus breaking most of the
functionality of your account.

Environment variables can be used in shell scripts. For example, if you wanted a
shell script to create a directory with your user name, you could use a line like this
“mkdir /scratch/$USER”. Environment variables are accessible within most
compiled computer languages also, although the mechanism for accessing them
varies from one language to the next.

Hidden files
Any file or directory that has a name starting with a period will be hidden by default
when you use the “ls” command. To see the hidden files in your home directory
type “ls -a”.

Hidden files and directories are typically used to store configuration settings that
control how your account behaves. These settings tell your account how to find
operating system commands, access various applications software, and set default
behavior of programs. A list of some of the common hidden files and directories is
shown in Table 10.2 . Many other hidden files may appear in your account only if
you are using certain software packages.

�114

!

 HPC User Manual - 11th Edition � Account Configuration

WARNING: Files in the .ssh directory can be configured to allow you to move
between systems without typing a password. This is convenient, but it can also be
dangerous. If you do this then a criminal gets into one of your accounts, they can
instantly get into all of your other accounts as well.

The files .bashrc.local .bashrc.local.uv and .bashrc.local.dmc are the ones that must
most frequently be modified in order to configure your account to run a given
software package, or to change the default behavior. The .alias file is used for setting
aliases, described later in this chapter. The .forward file contains an email address
where any notifications generated on the system will be sent. On SUSE Linux
systems, the .profile file is edited only in rare cases, such as setting the LS_COLORS
environment variable. Modifications needed for a specific program will be listed in
the file /opt/asn/doc/PROGRAM/README.md

The order in which commands are put in these files is sometimes important. For
example, the PATH environment variable is searched in the order that directories
appear, which determines what executable to run if there are two with the same name.

�115

Table 12.2 Useful hidden files & directories

File or Directory What it Does

.alias location for alias commands

.bashrc primary account configuration file for most Linux systems.
WARNING: Do not modify .bashrc on the ASC systems

.asc_queue preferences for the queue system

.bashrc.local settings that affect both uv and dmc

.bashrc.local.uv settings that affect the uv only

.bashrc.local.dmc settings that affect the dmc only

.bash_logout commands run at logout, less often used

.cshrc, .login, .profile primary account configuration file for most Linux systems.
WARNING: Do not modify .bashrc on the ASC systems

.flexlmrc license server configuration

.forward holds email address where notices are sent

.ssh directory with encrypted ssh keys & configuration

.vimrc configuration for the vi editor

!

 HPC User Manual - 11th Edition � Account Configuration

It is also advised that you only load modules for software you are using right now,
since modules can conflict thus breaking the software. This will remove many of the
settings that may come before it in the .bashrc.local files.

The source and module commands
Sometimes the account configuration needed by a program is more complex than is
convenient to ask users to type into their .bashrc.local file. In this case a whole list of
settings can be loaded with a single command using the “source” or “module”
commands.

Either the “source” or “module” command is needed to configure your account
to use many software packages interactively. These are often not needed to run
programs through the job queue system, as the queue scripts provided on the
system handle this for you.

The “source” command is available in all distributions of Linux (in some shells it is a
period instead of the word “source”). The “module” command is part of the LMOD
package, which is an add-on to the operating system described in the previous
chapter. The Alabama Supercomputer Center is slowly shifting software packages
from using the “source” command to using the “module” command.

The “source” or “module” command syntax needed to run a given software package
will be documented in the file /opt/asn/doc/PROGRAM/README.md (i.e.
/opt/asn/doc/gaussian/README.md).

The “source” command can be put in your .bashrc.local or .bashrc.local.dmc
or .bashrc.local.uv file. Here are examples of typical source and module load
commands. As shown here, comments (beginning with #) can be added to remind
yourself when each should be used.

The following sets the X-Windows $DISPLAY variable.
This is needed for some X-Windows clients
Do not source this for cygwin with -Y flag in ssh
source /opt/asn/etc/asn-bash-profiles-special/display.sh

this is needed to run Gaussview
module load gaussian/g09b01

�116

Reminder

 HPC User Manual - 11th Edition � Account Configuration

The Command Prompt
The default bash shell command prompt includes the full path to the current directory.
This can be inconvenient when working in a directory deep within the directory tree
and the command prompt is taking up most of the screen space, like this;

asntest@dmc:/opt/asn/doc/gaussian/sample_inputs_g09_A01>

This can be changed by setting the PS1 environment variable in the .bashrc.local file.
For example, try using the setting;

 export PS1='\h:\W> '

This will result in seeing a command prompt like this.

dmc:sample_inputs_g09_A01>

Command prompts can have the machine name, path, time, date and other
information. Details of how to set all of these options can be seen on the bash manual
page that you get by typing “man bash” and on websites such as
http://www.linuxselfhelp.com/howtos/Bash-Prompt/Bash-Prompt-HOWTO-2.html

Creating an alias
Aliases are keystroke short cuts. For example, a user who organizes calculations into
separate directories might want to see only a list of subdirectories of the current
director. He can this with a command like this.

 ls -l | grep ^d

While this works, it may be more than he wants to type many times each day. He can
make a faster way of doing this by putting the following line in his .alias file.

 alias ls2=“ls -l | grep ^d"

After setting this, he must log off and log back in for the command to take effect.
From then on, he can simply type “ls2” to get a listing of subdirectories. An alias
can also be used to ensure that a given command line option is always added to a
command.

If you have problems with an alias, try typing the command that the alias runs.
List this command when contacting technical support.

�117

 Tip!

 HPC User Manual - 11th Edition � Account Configuration

You can temporarily remove an alias with the command “unalias name”.

Tips for Effectively Using the Supercomputers
The following are some suggestions for getting the most out of the uv and dmc.

• Set aliases for frequently typed, long commands.

• Learn to use multiple Linux commands like head, tail, cat, and grep in a single
command line with data piped from one to the next.

• Learn to write scripts to automate tasks.

• Create a bin directory for your scripts, and add it to the PATH variable.

• Organize your files into directories so you can find them easily.

• Have a plan for what files to keep, which you get rid of, where you store them
on campus, and when they get deleted.

• Run tests to find out how many processors your software will use efficiently.
Too many will hurt your productivity more than using fewer than optimal.

• Learn to utilize the queue system effectively.

• Look at the README.md file for your program in /opt/asn/doc/PROGRAM

�118

 Tip!

 HPC User Manual - 11th Edition � Compiling Software

13. Compiling Software
The majority of the applications on supercomputers are written in compiled languages
such as C++, C, and Fortran. Compiled programs tend to run faster and use less
memory than interpretive languages, such as Perl, R, or Matlab. Languages that
compile to byte codes, such as Java or Python, are intermediate in performance.

The Fortran programming language was originally created in the 1950s as a language
for mathematical applications. Major revisions to the Fortran specification were
released in 1966, 1977, 1990, 1995, 2003, and 2008. These revisions have added
support for newer programming conventions such as pointers. Fortran 2003 added
object oriented programming constructs to Fortran. Fortran 2008 added concurrent
programming. However, Fortran remains a procedural, line oriented language,
making it archaic by the standards of the computer science field. Fortran is a very
small percentage of all software development in the world. In spite of this, Fortran
code remains rather common in the high performance computing field due to the
number of software packages that utilize code that was written in Fortran decades
ago.

The C language is the programming language of choice for writing operating systems
and hardware device drivers. It is a procedural language that is powerful enough to
do things that could only be done in processor specific assembly language before the
invention of C. However, C is rather unforgiving as a language for applications
development because it is weakly typed and contains no intrinsic error checking. As
such, C is rarely used for writing mathematical simulation software.

The C++ language is an object-oriented, strongly typed derivative of C. With a few
notable exceptions, C programs will compile as C++ code. However, the majority of
C++ code is object oriented code, which would not compile as C code. C++ has been
used for a large percentage of applications software written in the past 20 years.

Prior to the invention of the Java language, most graphic interface based programs
could only be used under one operating system. Java changed that situation by
creating a programming language that could be used to write graphic interfaces that
would run on many different platforms without any change to the code, or even being
recompiled. Thus Java is very popular for graphic interface development. However,
Java compiles to byte codes which results in it not executing as quickly as natively
compiled programs for complex mathematical operations. Many software packages
use a Java graphic interface on top of mathematical executables written in C, C++ or
Fortran.  

�119

 HPC User Manual - 11th Edition � Compiling Software

There are several different compiler suites available on the ASC systems. These
include the following.

• GNU C, C++, and Fortran
• Intel C, C++, and Fortran
• Portland Group C, C++, and Fortran
• Special purpose languages such as CUDA, Objective Caml, Unified Parallel

C, and LISP

Selecting the best compiler is not necessarily a trivial task. One rule of thumb is to
follow the software makers recommendations, if a recommendation is given. Many
public domain software packages are developed using GNU compilers, and in rare
cases may only compile with the GNU compilers. Some legacy codes, such as those
originally developed for Vax Fortran, compile best with the Portland Group
compilers. Those exceptions aside, the Intel compilers most frequently give the best
optimized executables, which thus run the fastest.

Additional information about the compilers is available by using the
“man <command>” command. There are also documentation and README files
in the directories /opt/asn/doc/compilers_uv and /opt/asn/doc/compilers_dmc

In some cases, ASC keeps old versions of compilers. A users account can be
configured to use these older versions by adding commands to the .bashrc.local
and .bashrc.local.uv and .bashrc.local.dmc files. Settings in .bashrc.local affect both
clusters. Those options are documented in the README.md files in the directories
listed in the previous paragraph.

The compile C, C++, and Fortran commands are;

 gcc GNU C/C++
 g++ GNU C++, loads C++ libs
 gfortran GNU Fortran 95 (includes Fortran 77 & 90)
 pgcc Portland Group C compiler
 pgCC Portland Group C++ compiler
 pgf77 Portland Group Fortran 77
 pgf90 Portland Group Fortran 90
 pgf95 Portland Group Fortran 95
 pghpf Portland Group High Performance Fortran
 icc Intel C
 icpc Intel C++
 ifort Intel Fortran 66, 77, 90, 95

�120

 HPC User Manual - 11th Edition � Compiling Software

Compile commands, except a very old version of gcc, are not available until
you load the appropriate module.A Fortran Program Example

The basic sequence for compiling a Fortran program is as follows:

 ifort program.f –o program

The source code must be in a file named with the extensions .f or .f90

The program can be executed interactively by simply typing the following.

 ./program

If the executable name isn’t specified on the compile line, it will be named a.out

The following is an example of a console session in which a Fortran program
is compiled and executed.

uv:~/hello $ ls
hello.f
uv:~/hello $ ifort hello.f
uv:~/hello $ ls -l
total 1028
-rwxr-xr-x 1 asndcy analyst 800106 May 19 11:58 a.out
-rw-r--r-- 1 asndcy analyst 65 May 18 13:49 hello.f
uv:~/hello $./a.out
 Hello
uv:~/hello $

A C Program Example

The GNU C compiler is called with the gcc command:

 gcc source.c -o myprogram

The command above compiles the source code in the file “source.c” and creates an
executable named “myprogram”. If the executable file name is not specified, it will
be named a.out

The following line executes the program

 ./myprogram

�121

EXAMPLE

Reminder

 HPC User Manual - 11th Edition � Compiling Software

The following is an example of a console session in which a C program is
displayed, compiled and executed.

asndcy@dmc:~/hello> ls
hello.c
asndcy@dmc:~/hello> ls -l
total 4
-rw-r--r-- 1 asndcy analyst 81 May 19 12:06 hello.c
asndcy@dmc:~/hello> cat hello.c
#include <stdio.h>
main()
{
 printf ("Hello Worldfrom C\n");
 return;
}

asndcy@dmc:~/hello> gcc hello.c
asndcy@dmc:~/hello> ls -l
total 20
-rwxr-xr-x 1 asndcy analyst 13351 May 19 12:07 a.out
-rw-r--r-- 1 asndcy analyst 81 May 19 12:06 hello.c
asndcy@dmc:~/hello> ./a.out
Hello Worldfrom C
asndcy@dmc:~/hello>

Compilation and Runtime Errors
An important part of the programmers skill set is recognizing common compile and
runtime errors. If understood, these tell you what is wrong and suggest how to fix the
problem. The following are some common errors and what to do about them.

The first error
As a general rule of computer science, the first error generated is the most important
one, at least most of the time. It is quite common that thirty error messages may be
generated from a single problem. The first one is the real problem and the subsequent
ones are side effects of that problem, called cascading errors.

Cannot execute binary file
This usually means that you are trying to run a program compiled for an architecture
of processor that is not compatible with the processor in this computer or compute
node.

The line number
Compilers often tell you exactly what line of the program has a problem. There is a
quirk with some compilers and some types of errors in which the problem may
actually be on the line of code before the line specified by the error message. Look at
both.

�122

EXAMPLE

 HPC User Manual - 11th Edition � Compiling Software

No such file or directory
This error can be generated when a file can’t be found by the compiler. There may be
several ways to fix this. Many compilers recognize the environment variables
LD_LIBRARY_DIR (sometimes replaced by LIBRARY_PATH, SHLIB_PATH, or
LIBPATH) and INCLUDEDIR. Sometimes you need to specify a path in a Makefile
or compile line. Some software packages have installers that recognize environment
variables. Sometimes paths are specified on the command line to a configure
program. Sometimes an absolute path is specified in the code, such as #include
commands with double quotes, in which case it may be necessary to copy the
necessary files into the source tree. With all of these possibilities, your best bet is to
read the installation documentation. If that doesn’t help, start trying each of the
possibilities.

Not declared in this scope
This error means that the code is trying to call a function that has not been defined.
Functions are usually defined in header files with an extension of .h The header file
is then referenced in the code with a command like #include <myheader.h>
and the .h may be optional in the command. Most commonly you see this error if the
include command is in the code, but the compiler can’t find that file. A flag like this
can be added to the compile line -I/path/to/include or this may be
accomplished by giving some argument to a configure script. This error can also
occur if you are including the header file from one version of the library then linking
against a different version.

Permission denied or Failed to execute
This typically happens when you wrote a script, but did not set the execute
permissions on the file with chmod command. Another reason for getting this error
can be writing a script file on a Microsoft Windows computer, which uses different
end of line characters in text files. A text file can be converted from windows format
to linux format with the command dos2unix filename

Segmentation fault or Segmentation violation
These are generally runtime errors, generally called segmentation errors.
Segmentation faults are related to memory. This can happen if you didn’t request
enough memory from the queue system. It can also occur if the computer itself does
not have enough memory installed. Another cause can be if you created an array 100
elements long, then tried to access element 101.

Syntax error
This is an error in correctly specifying the command or punctuation in a programming
language.

�123

 HPC User Manual - 11th Edition � Compiling Software

Unable to locate a modulefile
The error occurs if you have a module load module_name command and no
such module is found. This most often occurs if the job is running on the UV and you
are trying to load a module that is only available on the DMC.

Undefined references
An undefined reference means that the compiler can’t find a function that your code
is calling. This is usually because a required library isn’t being linked in on the
compile line. Sometimes the order in which libraries are specified is important, so the
seemingly missing library has to put at the end of the compile line.

If you add the necessary library (with a -lname flag) and still can’t find it, you may
have to specify the path for the library like this -L/path/to/lib -lname

Warnings
99.9% of the time warnings can be ignored. That one in a thousand where a warning
message identified the root problem will be one where you tried many other options
before looking closely at the warning messages.

Static Versus Dynamic Linking
Most programs use libraries. These are files that contain functions that can be called
from your program. For example, trigonometric functions are often not part of the
core programming language, thus requiring you to compile with a -lm flag to load
the math library if your program must call a cosine function. There are two ways in
which your program can access these libraries of functions, called static and dynamic
linking.

Static linking means that all of the necessary functions are physically integrated into
the executable file. This means that the executable will always be able to find those
functions and will always use the same versions of those functions. Static linking is a
good idea if robustness is important, particularly if you want to use an executable on a
computer other than the one where it was compiled. Static linked programs also
execute slightly faster. The disadvantage of static linking is that the executable files
take up more disk space.

�124

 HPC User Manual - 11th Edition � Compiling Software

Dynamic linking means that the program knows where to find those functions in
library files when it needs them to execute. This means that the executable files will
be smaller. As such, your program can break if the library files are changed, or
erased, or if the environment variables specifying their location are changed. Your
program will also execute slightly slower. You can check what libraries are dynamic
linked executable will use with the command

 ldd executable_name

Most compilers use dynamic linking by default, and have flags to specify static
linking. The library files must also be compiled for dynamic or static linking.
Library files have names ending with .a are static linked. Library files having names
ending with .so are dynamic linked.

Optimization
This section provides information about techniques you can use to optimize Fortran,
C, or C++ code on the ASC supercomputers.

Optimization is the process of changing a program or the environment in which it
runs to improve its performance. Performance gains generally fall into one of two
categories of measured time:

• User CPU time. Time accumulated by a user process when it is attached to a CPU
and executing. When running on a single CPU, CPU time is a fraction of elapsed
time. When multitasked, CPU time is a multiple of elapsed time.

• Elapsed (wall-clock) time. The amount of time that passes between the start and
termination of a user process. Elapsed time includes the following:

• User CPU time
• Linux system CPU time
• I/O wait time
• Sleep or idle time

Optimization begins with code that has been debugged and is running correctly on the
system. Before beginning optimization work, some sample inputs should be prepared
along with validated correct outputs. This allows testing to verify the work done did
not change the results given by the software.

Manual parallelization with libraries like MPI, PVM, ARMCI and LINDA is very
labor intensive. It is advisable to try all other optimization options and analyze the

�125

 HPC User Manual - 11th Edition � Compiling Software

size of future runs carefully before embarking on this path. Furthermore, some codes
will parallelize well while others get only marginal improvement. For an algorithm
that does parallelize well, this can allow you to decrease the elapsed execution time in
proportion to the number of CPUs used.

The first step is to compile using the best compiler options and data types for your
program. It is recommended that you read the compiler documentation, as some flags
may improve execution speed at the expense of losing some mathematical accuracy.
The following paragraphs give recommendations for the compilers available at ASC.

ALL COMPILERS: The first optimization step is to try -O1 -O2 and -O3 compiler
flags. -O3 is usually the best, but in rare cases a code won't compile correctly with
-O3. GNU compilers use -O in place of -O1.

INTEL COMPILERS: Other flags that can improve optimization are; -Bstatic,
-fast, -fnsplit, -ansi-alias, -qopt-prefetch, -unroll-aggressive, -ip, -ipo, -prof_use,
-tpp2.

PORTLAND COMPILERS: Other flags that can improve optimization are; -Bstatic,
-fast, -O4, -Mipa=fast,inline, Mcache_align, -Mdalign, -Mllalign, -Mfunc32, -
Munroll, -Minline,
-Mscalarsse.

GNU COMPILERS: Other flags that can improve optimization are; -Og, -Ofast,
-fcaller-saves,-fcse-follow-jumps, -fcse-skip-blocks, -fdelayed-branch,
-felide-constructors, -fexpensive-optimizations, -ffast-math, -ffloat-store, -fforce-addr,
-fforce-mem, -fmemoize-lookups, -fno-defer-pop, -fno-function-cse, -fno-peephole,
-fomit-frame-pointer, -frerun-cse-after-loop, -fschedule-insns, -fschedule-insns2,
-fstrength-reduce, -fthread-jumps, -static, -funroll-all-loops, -funroll-loops. The
-fexpensive-optimizations can be a useful catch-all to try first. Beware of -ffast-math
if your code is sensitive to numerical precision.

More information on compiler flags can be found in the man pages for each compiler
command, and in files in the directories /opt/asn/doc/compilers_uv and
/opt/asn/doc/compilers_dmc on both supercomputers. Up to a 4X speedup can be
achieved by using the compiler flags to utilize vector instructions.

One option is to use optimization flags that will utilize the instructions on the more
recently made processors. This can give improved execution time at the expense of
only being able to run the executable on certain nodes in the cluster. Sometimes
limiting where jobs can run will increase queue wait times to the point that this does
more harm than good. A more sophisticated approach is to compile several versions

�126

 HPC User Manual - 11th Edition � Compiling Software

optimized for various processors, then write a queue script to select which one to run
based on the processor architecture where the job is assigned.

Before continuing any further with optimization, it is highly advisable to prepare a
set of test calculations and correct results to compare them to. Although it is
usually possible to make a program get the same answer much faster, there is
definitely a risk that the changes you make might break the program, causing it to
give incorrect results. Throughout the course of optimization work, save the last
copy of the source code that ran correctly, and rerun the test set frequently.

Optimizing code is an iterative process requiring the following steps.

1. evaluate the code
2. determine possible areas where optimization techniques can be applied
3. apply the techniques
4. check code performance
5. is code sufficiently optimized?

• if not, return to step 1
• if yes, the code is optimized for single CPU performance

The evaluation step is most often done using a program called a profiler. In order to
use a profiler, first recompile the program with a compiler flag that turns on profiling.
Then run a test calculation, which generates an extra output file with profiling data.
Then run the profiler, which analyzes the data and outputs information about how the
program ran.

Usually, there are two crucial pieces of data in the profiler output; how much time
was spent executing each subroutine, and how many times each subroutine is called.
The most productive optimization is usually making the functions that spend the most
time executing run more efficiently. The second most productive optimization is
usually cutting down on the number of calls to a function that is called millions of
times.

On the following page is an example of how to compile a C++ program with the g++
compiler, run a calculation, and profile the code with the gprof profiler.

�127

 Tip!

 HPC User Manual - 11th Edition � Compiling Software

uv:~/source/mandy $ g++ mandy.cc -O3 -pg -o mandy
uv:~/source/mandy $ mandy test5_big
uv:~/source/mandy $ gprof mandy
Flat profile:

Each sample counts as 0.000976562 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
100.00 263.00 263.00 1 263.00 263.00 mandelbrot(_IO_FILE*)
 0.00 263.00 0.00 1 0.00 0.00 _GLOBAL__I_x_initial
 0.00 263.00 0.00 1 0.00 0.00
write_header(_IO_FILE*)
 0.00 263.00 0.00 1 0.00 0.00
__static_initialization_and_destruction_0(int, int)

 % the percentage of the total running time of the
time program used by this function.

(more explanation of columns listed here)

 Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.00% of 263.00 seconds

index % time self children called name
 <spontaneous>
[1] 100.0 0.00 263.00 main [1]
 263.00 0.00 1/1 mandelbrot(_IO_FILE*) [2]
 0.00 0.00 1/1 write_header(_IO_FILE*) [9]

 263.00 0.00 1/1 main [1]
[2] 100.0 263.00 0.00 1 mandelbrot(_IO_FILE*) [2]

 0.00 0.00 1/1 __do_global_ctors_aux [14]
[8] 0.0 0.00 0.00 1 _GLOBAL__I_x_initial [8]

 0.00 0.00 1/1 main [1]
[9] 0.0 0.00 0.00 1 write_header(_IO_FILE*) [9]

 0.00 0.00 1/1 __do_global_ctors_aux [14]
[10] 0.0 0.00 0.00 1
__static_initialization_and_destruction_0(int, int) [10]

 (more explanation of the above table printed here)

In the first table generated by gprof, the third column indicates how much time was
spent executing each function. Since essentially all of the CPU time was spent on the
mandelbrot function, that is the only one that the programmer needs to worry about
optimizing. It is very typical that the majority of the CPU time executing even a
complex program is spent in executing just a handful of the functions.

In the example above each function was called only once (column 4 of the first table).
However, if there were a function called millions of times, it would show up here.
The second table shows where each function was called from.

�128

 HPC User Manual - 11th Edition � Compiling Software

Because the program was compiled with the “–pg” option, it generated an additional
file, named gmon.out when it was executed. The profiler is analyzing both the
executable and the gmon.out file to give an analysis of how the program performed
for this one specific calculation. Ideally the test calculation should run anywhere
from 5 minutes to 30 minutes. If the running time is too short, there won’t be enough
data to give useful results. If the running time is too large, it will be inconvenient to
do the optimization work.

Note that profilers give information only to a certain accuracy. This is because the
operating system kernel tracks the time threads are running only to a certain accuracy.
As a general rule of thumb, times of a second or more are meaningful for a five
minute calculation, but fractions of a second are not. More understanding of the
source of these errors can be gained by investigating kernel accounting based on a
“jiffy counter” (currently used in all versions of Linux) and the alternative, more
accurate, scheme called “microstate accounting” that is currently available only in the
Solaris version of Unix available from Sun Microsystems.

Once the sections of code needing to be optimized have been identified, the
programmer must find a way to get the exact same result more efficiently. Here are
some of the most common ways to do this. These start with number 1 being the most
likely to help, working down to ones that give less significant improvements.

1. See if there are known algorithms for doing the same task that have a better time
complexity than the current algorithm.

2. Look at nested loop structures.
1. Add a test to determine whether an inner loop needs to be executed on a given

iteration.
2. See if a function can be moved from an inner loop to an outer loop.
3. See if the loops can be reordered.

3. Look for values that are being computed more than once. Compute them once
and store them in a variable, array, or even a file.

4. Are values being computed, which could be replaced by constants? For example,
replace sqrt(2.0) with 1.414213562

5. Cut down on the number of times a given function is called.
6. See if sorts can be replaced by a data structure that maintains the data in order.
7. Look for large data moves that could be replaced with pointers.
8. Minimize the use of transcendental functions. For example X*X*X is faster to

evaluate than pwr(X, 3.0).
9. Replace single character file I/O with block reads and writes.
10. Programs that do very large amounts of file I/O can be limited by I/O. It is

sometimes productive to store data in memory instead of files, or to recompute
values rather than storing them for reuse later.

�129

 HPC User Manual - 11th Edition � Compiling Software

Programming Best Practices
Well written software is a pleasure to work with, and to write. Badly written software
can be a nightmare for everyone involved. Degree programs tend to focus on
learning programming languages, data structures, algorithms, and architecture. Once
you have graduated (regardless of having a degree in computer science, chemistry or
some other field) you will find that any professionally run organization has a strong
emphasis on good programming practices. Many organizations have code reviews
where your boss and senior coworkers review the source code you have written and
critique how you could have done a better job. The details of programming best
practices vary from one organization to the next, but the same topics are addressed.
The following paragraphs discuss the most important aspects of programming best
practices. References to additional information are in the Bibliography.

Code basics

Variable naming is important to remind yourself, and programmers that come after
you what the variable does. Consider the following examples

d this tells you nothing
distance a bit better
distanceToSun now we know what distance
ldDistanceToSun prefix indicates locally scoped, double precision
ldDistanceToSunKM excellent, we know what it is, and the units

Many companies have variable naming standards. Probably the most comprehensive
is the Hungarian Naming scheme created at Microsoft, and used by many other
organizations.

Indents in code show which lines are inside of loops, “if” statements, etc. Even
archaic Fortran allows indents past the seventh character.

Comments are sections of code that are not compiled or executed. These are where
you put notes about what the function does, what it assumes about input data, longer
descriptions of variables, why you inserted specific lines of code, etc. Many people
have regretted not putting in enough comments. We have never heard of a problem
with too many comments.

Use dynamic allocation. Dynamic allocation is setting the size of arrays at run time,
not at compile time. This prevents problems from arrays being sized too small, or the
program using too much memory to run small problems.

�130

 HPC User Manual - 11th Edition � Compiling Software

Do not hard code paths or input values. Program input should be in a file that is
read by the program, or provided interactively through a graphic interface. The path
to the location of needed files can be set in an input file, on the command line, or in
an environment variable.

Enumerate flags. It is often necessary to tell a function how to select from optional
behaviors. Doing so with integers makes the code difficult to read. Enumerate the
flags so that you can use English words as flags.

Create plenty of error traps. It is immensely aggravating to debug software that
passes garbage data from one function, to another, to another, to another. Error traps
are “if” statements that check that the data sent to a function is valid, and if not print
out a usable message with the function name, problem, and data value. As a matter of
self discipline many organizations require error traps to also halt program execution.
If error traps slowing down code execution is a concern, have a way to turn them off
through the use of a command line flag, or compile time #ifdef statement.

Expect user input to be wrong. A user’s first impression of a program is based how
well it behaves when they are initially learning to use it. Users can, will, and do leave
out portions of the input, put in extra input, put text in numeric fields, and put in
combinations of options that make no logical sense to an expert in the field. As such,
any user input should be heavily error trapped. Error message should give a clear
English description of what is wrong, and if possible how to fix it. Even the most
experienced users will occasionally make mistakes and appreciate good checking of
input data. Good input error traps and descriptive error messages will also cut down
on the number of technical support calls you get.

Error trap files and directories. Always check for the existence of a file before
opening it, or the existence of a directory before using it. In many languages the file
open command returns an error code to make it easier to write error traps.

Software architecture

Writing code is not the first step in software development. The first step is typically
to define who will use the software and their use cases. Use cases are examples of
the types of tasks that must be performed using the software. Each task can then be
broken down into a set of steps, input values, buttons, command line flags, etc.

Software can be prototyped. If the core of the software is dependent upon creating a
new algorithm for solving some scientific problem, it might be best to test that
algorithm before writing the whole program. This is sometimes done with a lighter
duty scripting language. Graphical software can have paper prototypes showing how
it will look, and even used for initial usability testing.

�131

 HPC User Manual - 11th Edition � Compiling Software

Design the software’s high level architecture. There are many discussions of this in
books on design patterns. Design patterns are high level architectural constructs
such as a client-server architecture, wrappers, interpreters, etc.

Give careful consideration to the use of third party function libraries. Libraries can
save large amounts of software development work. However, if the library is poorly
maintained it might introduce errors into the code, incompatibilities with certain
operating systems, etc. Every library used increases the difficulty of getting the
software to install and compile on another computer.

Avoid machine dependent code. If the software uses functions specific to one
operating system or hardware platform, it can be difficult or impossible to get it to run
on other computers.

Manage shared object libraries. Shared objects (dll’s in Windows) are libraries of
functions that are loaded into memory only once, even if being used by multiple
programs. This saves memory and disk space. However, your software can break if a
new version of the needed library is installed on the system. Some developers static
link all executables to avoid these programs, and improve run time performance.
Some manage paths with wrapper scripts or the Modules functions described
elsewhere in this manual. Others include all needed libraries with the code and force
the paths to use that copy, even if it is duplicating something that is part of the
operating system.

Organization

Have an automated build process. This can be done with the Linux “make”
command, the “ant” software, or shell scripts. In any case, there should be a single
command to compile the whole software package.

Use a code repository. These are systems that store all of (and all previous versions
of) the source code, often including documentation, tests, and example input data.
The code repository database will have a mechanism to undo changes that broke the
software, and to see what the code looked like in any previous version of the
software. There are public domain version control systems such as Mercurial and
Subversion as well as web portals and commercial software packages. There is an
overview and comparison of version control systems on the supercomputers in the file
/opt/asn/doc/subversion/version_control_systems.txt

Have a database of all known bugs in the software. This can be as simple as a ring
binder, but is most often a relational database with a web front end. Most bug

�132

 HPC User Manual - 11th Edition � Compiling Software

tracking systems also have mechanism to enter feature requests, assign bugs to
developers, and track what version the bug was fixed or identified in.

Have code reviews. A code review is a meeting in which source code is examine by
technical management and senior coworkers. Even the most diligent programmer
will become lax if no one ever looks at their code. Knowing that lax programming
will be publicly discussed keeps people adhering to the standards.

Establish appropriate project management practices. There are many software
project management methodologies with names like waterfall, spiral, agile, and
extreme. Which is best depends upon whether the software is dependent upon
experimental algorithms, is highly cost driven, or will be developed for many years to
come. There is an overview of software project management methodologies on the
HPC systems in the file /opt/asn/doc/mercurial/sw_devel_methods.txt

Validation and refinement

Functional tests are tests of the entire program. These tests and various subsets of
them are usually automated. Functional tests verify that correct results are being
generated and that functions are working together correctly. There is often an
automated mechanism that runs a good selection of functional tests every night.

Unit tests are tests of individual functions within the software. Unlike functional
tests, unit tests can tell which subroutine is broken. Unit tests are used when routines
are written and modified. If the final program is expected to be more than a few
thousand lines of code, start writing unit tests from day one and require programmers
to check in the unit tests when they check in the code. Failure to do so will result in
not knowing which functions to trust and having to constantly hand check function
after function as part of debugging.

Profile the software, and optimize key sections for performance. Especially for
modeling and simulation software, a few weeks of performance optimization can save
years of run time.

There are static code analysis programs, and run time analysis programs. These
identify problems such as memory leaks, and many types of programming errors.
Often turning on all compiler warnings can find a large percentage of these problems.

If security issues are a concern, use testing techniques specifically designed to
identify those problems.

�133

 HPC User Manual - 11th Edition � Compiling Software

Documentation

Don’t expect the documentation person to do your job for you. Writing
documentation is part of programming, even if there is a documentation expert to
pretty it up.

User manuals are as important as the software itself. User manuals must describe
the functions of the buttons and input values, but that is not sufficient. It is necessary
to have documentation discuss reasonable values, and provide tutorials. Really good
documentation describes when and why you would use a particular setting.

Self documenting code is a myth. Write a developers guide, even if it is just a text
file. Describe the code architecture, object classes, build processes, and other
development specifics. If the new intern is asking piles of questions or can’t get
anything done, you need a better developers guide.

Include example files with the software distribution, so users can see a working input
and the corresponding output.

�134

 HPC User Manual - 11th Edition � Bibliography

Bibliography
This manual undoubtedly will not cover everything you need to know. This section is
provided to suggest some other useful references. There are several important points
to note in addition. First, with the rise of Linux there is now a large amount of useful
information freely accessible on the internet (and an even larger amount of useless
information). Second, many, many books published by O’Reilly have proven to
provide consistently high quality information on topics related to computing.
Documentation for specific software packages in available by logging in on the HPC
systems and typing the command ascdocs

System specific information

Documentation from SGI is available online at
http://techpubs.sgi.com/library/tpl/cgi-bin/init.cgi

Tutorials for beginning users of Linux

Kiddle, Oliver , Jerry Peek, Peter Stephenson. From Bash to Z Shell. Berkeley, CA,
Apress L.P., 2004.

Newham, Cameron. Learning the Bash Shell 3rd Edition. Sebastopol, CA, O’Reilly &
Associates, Inc., 2005.

Blum, Richard. Linux For Dummies, 9th Edition. Hoboken, NJ, Wiley Publishing,
2009.

Printed compilations of Linux commands

Barrett, Daniel. Linux Pocket Guide. Sebastopol, CA, O’Reilly & Associates, Inc.,
2004.

Siever, Ellen, Robert Love, Arnold Robbins, Stephen Figgins. Linux in a Nutshell 6th
Edition. Sebastopol, CA, O’Reilly & Associates, Inc., 2009.

Volkerding, Patrick, Kevin Reichard. Linux System Commands. New York, NY, John
Wiley & Sons, 2000.

Hughes, Phil. Linux for Dummies Quick Reference 3rd edition. Hoboken, NJ, Wiley
Publishing, 2000.

�135

 HPC User Manual - 11th Edition � Bibliography

Books about using specific Linux commands

Robbins, Arnold, Elbert Hannah, Linda Lamb. Learning the vi and Vim Editors.
Sebastopol, CA, O’Reilly & Associates, Inc., 2008.

Information on writing shell scripts

Burtch, Ken. Linux Shell Scripting with Bash. Indianapolis, IN, Sams Publishing.
2004.

Robbins, Arnold, Nelson Beebe. Classic Shell Scripting. Sebastopol, CA, O’Reilly &
Associates, Inc., 2005.

Cooper, Mendel. Advanced Bash-Scripting Guide. http://www.tldp.org/LDP/abs/html/
Kochan, Stephen, Patrick Wood. Unix Shell Programming. Carmel, IN, Hayden
Books, 2003.

Information on parallel programming

Chandra, Rohit, Leo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, Ramesh
Menon. Parallel Programming in OpenMP, San Francisco, CA, Morgan Kaufmann,
2000.

Dongarra, Jack, Ian Foster, Geoffrey Fox, Ken Kennedy, Andy White, Linda Torczon,
William Gropp. Sourcebook of Parallel Computing. San Francisco, CA, Morgan
Kaufmann, 2003.

Gropp, William, Ewing Lusk, Anthony Skjellum. Using MPI. Cambridge, MA, MIT
Press., 1999.

Sloan, Joseph. High Performance Linux Clusters. Sebastopol, CA, O’Reilly &
Associates, Inc., 2004.

Wadleigh, Kevin, Isom Crawford. Software Optimization for High Performance
Computing: Creating Faster Applications (HP Professional Series) Prentice Hall,
2000.

Sanders, J., E. Kandrot. CUDA BY EXAMPLE. Upper Saddle River, NJ, Addison
Wesley, 2011.

�136

 HPC User Manual - 11th Edition � Bibliography

Sources of information on time complexity of algorithms

Big O Notation, Wikipedia
http://en.wikipedia.org/wiki/Big_O_notation

Young, David. Computational Chemistry; A Practical Guide for Applying Techniques
to Real World Problems. New York, NY, John Wiley & Sons, 2001.

Most text books on algorithms and data structures discuss time complexity.

Programming best practices

McConnell, Steve. Code Complete: A Practical Handbook of Software Construction
2nd Edition. Redmond, WA, Microsoft Press, 2004.

McConnell, Steve. Rapid Development: Taming Wild Software Schedules. Redmond,
WA, Microsoft Press, 1996.

Sutter, Herb, Andrei Alexandrescu. C++ Coding Standards; 101 Rules, Guildelines,
and Best Practices. Boston, MA, Addison-Wesley, 2005.

Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA, Addison-Wesley,
1994.

Hass, Anne Mette Jonassen. Guide to Advanced Software Testing. Boston, MA,
Artech House, 2008.

Secure coding standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards

�137

