
Working with the Queue System at the Alabama Supercomputer Center

Nearly all supercomputing facilities like the Alabama Supercomputer Center (ASC) use a job
queue system. A job queue system is similar to a printer queue; a pile of work can be submitted
and the queue system software will schedule and start each job when the necessary resources
become available.

In the case of a job queue system, the resources being managed are computer processors,
memory, and sometimes software licenses.

The queue system is the researcher’s friend. If you want to get a large amount of work done, the
best thing you can do is learn how to utilize a queue system effectively.

The queue system also guarantees that the user’s job will receive the number of CPUs and
amount of memory that they requested when the job was submitted.

Before being able to access the queue system, one first needs to connect to the ASC. This is
done from your local machine using a secure shell (SSH) in a Terminal emulator (such as
Terminal on Apple OS X or SecureCRT on Windows):

ssh username@uv.asc.edu

Once logged into the ASC, there are a number of queues that are available depending on the type
of job you plan to run. A list of the available queues can be displayed with the

qlimits

command. The qlimits command is called without any arguments. Calling qlimits gives
an output like the following:

The “Wall Time” column in this output gives the amount of time, per CPU, that can be requested
in the format HH:MM:SS. The “Mem” column shows the maximum memory that can be

requested, which is a total for all CPUs. The “# Cores” column shows how many CPUs can be
requested by a job in that queue

Submitting jobs to the Alabama Supercomputer Center queues

When the user has decided on the analyses to be performed, those specific commands and their
parameters are placed into a text file generically called a “script”. Such scripts are submitted to
the queue using the “run_script” command, which is configured to run a script that does not
require arguments. The run_script command forces the job to use one or more processors,
all on a single node. There is also a “run_script_mpi” command for software capable of
using processors on different nodes.

For example, a program that we want to execute might be named “Trinity.pl” and requires
arguments with the name of input files such as test_left.fq and test_right.fq. In
this example, the program can’t be submitted directly to run_script because it has required
arguments. However, the user can create a script, named Trinity_job.sh, that contains the
following information:

#!/bin/sh
script to run Trinity.pl (THIS IS A COMMENT ON THE SCRIPT)
source /opt/asn/etc/asn-bash-profiles-special/modules.sh
module load intel/13.0
./Trinity.pl –-left test_left.fq –-right test_right.fq

The user can put this text in the Trinity_job.sh script using a text editor such as nano.
The characters “./” in front of the program name indicate that the script expects to find the
Trinity.pl program in the same directory as the input files and script itself. The source
and module load sections tell your program how to find the libraries that came with version
13.0 of the Intel Compiler. Notably, if you had to load modules to compile the software into
a binary in the first place, you must load the same modules to run that software. We will discuss
what your source and module lines should look like for the different programs you may want to
use.

The script file must be made executable (for the system to be able to run it) with the command:

chmod +x myscript (WHERE “MYSCRIPT” IS SPECIFIC TO THE SCRIPT YOU WROTE)

The job/analysis can now be submitted to the queue system with the following command:

run_script myscript

After executing run_script myscript you will see several prompts about the job that you
will need to answer:
Choose a batch job queue:
Queue CPU Mem # CPUs
-------------- ---------- ------ ------

small-serial 40:00:00 4gb 1
medium-serial 90:00:00 16gb 1
large-serial 240:00:00 120gb 1
small-parallel 48:00:00 8gb 2-8
medium-parallel 100:00:00 32gb 2-16
med-parallel 100:00:00 32gb 2-16
large-parallel 240:00:00 120gb 2-64
daytime 4:00:00 16gb 1-4
express 01:00:00 500mb 1

Enter Queue Name (default <cr>: small-serial) small-parallel

Enter number of processor cores (default <cr>: 2) 2

Enter Time Limit (default <cr>: 96:00:00 HH:MM:SS) 24:00:00

Enter memory limit (default <cr>: 1gb) 2gb

Should this job run on uv, or dmc (default: any) dmc

Choose your job starting date and time (<cr> for now):

If not running right now, enter time and date as
[[CC]YY]MMDDhhmm[.ss]

Enter a name for your job (default: watercomG09)
Trinity_test

==
===== Summary of your script job =====
==
The script file is: Trinity
The time limit is 24:00:00 HH:MM:SS.
The memory limit is: 2gb
The number of CPUs is: 2
The job will start running after: 200810131149.36
Look for: Trinity_test in queue: small-parallel

Job number 82641.mds1.asc.edu

NOTE: In the Bioinformatics Bootcamp you will be using the class queue. This has limits of
64GB memory, up to 64 CPUs. The total amount of compute time per job will vary depending
on the resources requested for it.

Checking the status of your job

The “squeue” and “sjstat” commands shows what jobs are currently running or pending in
the queue system.

squeue
 This command gives basic output on queued jobs.

Example responses
are in italics/bold

Pressing enter will
automatically

choose the default
values

These options may
not be available

depending on the
queue

sjstat
Also provides list of your currently queued jobs.

sjstat –v
 Verbose output of job listing.
sjstat –r
 Shows only currently running jobs, not failed or pending.

The first two of these commands show a list of jobs. squeue automatically displays only your
jobs (e.g., you can’t see all the jobs in the queue). The job number is in the left hand column. The
numeric part of the job number can be used to get more information about the job, kill the job, or
request help from the ASC staff. These commands also show a job status indicated by R or Q. If
the status is R, the job is running. If the status is Q, the job is waiting to run.

One way to find out why a job isn’t running is with the command:

jobinfo –j <job_number>

Once a job submitted to the queue completes, an additional file will be created in the directory
were the job was started from. This is referred to as a log file. The file name consists of the job
name from the queue and the queue job number. This file contains information about how the job
was submitted to the queue, stdout output (i.e., what would have been otherwise printed to the
screen) from the job, stderr output (i.e., any special errors that the program might have produced)
from the job, and a listing of resource utilization. If a job fails to start or fails to run to successful
completion, this file is one of the primary places to find out what is (or went) wrong. If you
contact the ASC staff for help, they will want to see this file.
The resource utilization section of the log file looks like the following:

Your job finished at : Mon Nov 8 13:10:39 CST 2010
Your job requested :
cput=336:00:00,mem=2gb,neednodes=1:ppn=2,nodes=1:ppn=2,walltime=235:00:00
Your job used :
cput=00:00:01,mem=4372kb,vmem=35580kb,walltime=00:00:32
Your job's parallel cpu utilization : 1%
Your job's memory utilization (mem) : 0.21%
Alabama Supercomputer Center - PBS Epilogue

This entry is useful for a number of reasons, such as what level of computational resources were
utilized or what might have lead to a job being “killed”. For example, if the job requested 2gb of
memory and it used 2234mb (>2gb) of memory, the queue system may have “killed” the job due
to exceeding its memory allocation.

Deleting Queued Jobs

It is sometimes necessary to delete jobs from the queue. This can be because the job was
submitted with the wrong inputs, isn’t running correctly, or is stuck in a pending state due to

invalid queue settings. Running or pending jobs can be deliberately terminated with the
command:

scancel <job_number>

Use only the numeric part of the job number, not the .mds1 extension, when killing a job.

